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Abstract

The 11th century Arabic-Persian logician Ibn Sı̄nā (Avicenna) in
section 9.6 of his book Qiyās gives what appears to be a proof search
algorithm for syllogisms. We confirm that it is indeed a proof search
algorithm, by extracting all the essential ingredients of an Abstract
State Machine from Ibn Sı̄nā’s text. The paper also contains a transla-
tion of the passage from Ibn Sina’s Arabic, and some notes on the text
and translation.

1 Introduction

This paper contains a translation and commentary on section 9.6 of Ibn
Sı̄nā’s major work on logic, the volume ‘Syllogism’ (Qiyās) from his ency-
clopedic Šifā’, a work written in Arabic in the 1020s. The section is itself a
loose commentary on some lines in Aristotle’s Prior Analytics i.32. It falls
into two parts. In the first part Ibn Sı̄nā describes what he sees as the task of
logical ‘analysis’ (tah. lı̄l). One ingredient of that task is to complete formal
proofs which have a piece missing, and Ibn Sı̄nā gives his account of this
in the second part. A special case of this problem (though not one men-
tioned by Ibn Sı̄nā himself) is to find a formal proof where everything is
missing except the conclusion, and this is precisely the task of proof search.
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As far as I know, Ibn Sı̄nā’s account is the first work to come anywhere near
describing a proof search algorithm in formal logic.

Abstract State Machines (ASMs [6]) were introduced by Yuri Gurevich
[10]. They give a framework for describing algorithms with complete pre-
cision at whatever level of refinement we choose. The main business of
this paper is to describe an algorithm. The fact that Ibn Sı̄nā himself is less
than explicit about some details is no excuse for us to lapse into vague-
ness. If we want to record with decent precision what Ibn Sı̄nā used or
understood, and what he didn’t, we need the best descriptive tools; and so
I turned to ASMs. Fortunately the work is already partly done, because a
famous early application of ASMs was Börger and Rosenzweig’s specifica-
tion of the proof search algorithm of Prolog to meet the ISO 1995 standard
[5].

As far as I know, the use of ASMs below is the first application of ASMs
to the history of logic, and one of the first applications of ASMs in the hu-
manities. (A recent paper [11] calls for applications in linguistics, but these
go in a rather different direction.) In practice the task of constructing an
ASM was an invaluable research tool; it kept raising questions to be ad-
dressed to Ibn Sı̄nā’s text. Remarkably often Ibn Sı̄nā does answer the
questions in his text, though I often had to refer to other sections of the
Qiyās for clarifications. I doubt that any other logician between Aristotle
and Leibniz would have come through this test as successfully as Ibn Sı̄nā
does.

The paper has an unusually wide spread of prerequisites. First there is
the Arabic text of Ibn Sı̄nā and its historical background. Second there are
the mathematical facts about syllogisms. Third there is the methodology of
Abstract State Machines. Unfortunately papers are linear strings of text, so
some prerequisites will have to wait their turn. The structure of the paper
is as follows:

Section 1. Introduction.
Section 2. Historical background (on logic from Aristotle to Ibn
Sı̄nā).
Section 3. tah. s. ı̄l (roughly the counterpart in Ibn Sı̄nā of Tarski’s
notion of setting up a deductive theory).
Section 4. Mathematical prerequisites on syllogisms.
Section 5. Extracting the algorithm.
Section 6. Review.
Appendix A. Translation of Qiyās 9.6.
Appendix B. Notes on the text translated.
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Appendix C. The ASM.

The passage translated in Appendix A (Qiyās 9.6) needs to be matched up
with Qiyās sections 1.5 on categorical syllogisms, 9.3 on compound syllo-
gisms, 9.4 on supplying missing premises of simple syllogisms and 9.7–9 on
other aspects of analysis. I will do my best to get translations of these sec-
tions onto my website at http://wilfridhodges.co.uk. Meanwhile
Tony Street [30] gives a useful summary of Ibn Sı̄nā’s theory of predicative
syllogisms.

I thank Egon Börger, Jamal Ouhalla, Roshdi Rashed and Gabriel Sab-
bagh for some valuable remarks, and Amirouche Moktefi for advice on the
Arabic translation. But I take full responsibility for errors; there are bound
to be some, though I believe the use of ASMs has eliminated many of the
more serious ones.

2 Historical background

In the mid 4th century BC, Aristotle noticed that many arguments in math-
ematics, metaphysics and elsewhere have one of a small number of forms,
and that any argument of any of these forms is guaranteed to be convinc-
ing. He referred to arguments of these forms as ‘syllogisms’, and he classi-
fied them into three ‘figures’. He listed and discussed the argument forms
in lectures or writings which have reached us as a book called Prior An-
alytics [3]. That book was part of the edition of Aristotle’s writings which
was put together by Andronicus in the first century BC. Apart from the text
itself, we have virtually no evidence of what Andronicus did with his raw
materials. He may have put things together in ways that Aristotle never
intended.

Andronicus’ edition of Aristotle came to form a collection of textbooks
for the offspring of cultured parents in the Roman Empire. By the late
second century AD it had become clear that some explanatory commen-
taries on Aristotle’s text were needed, and Alexander of Aphrodisias wrote
a set. His commentaries were followed by many others, mostly now lost.
The two surviving Roman Empire commentaries on the parts of the Prior
Analytics that will concern us are those of Alexander and the 6th century
Alexandrian scholar John Philoponus. (See Ebbesen [8] Chapter III for an
account of the intellectual climate in which commentaries on Aristotle’s
logic arose.)

By the middle of the 8th century the new Arab empire had started to
absorb western scholarship, including Aristotle’s logic. Ibn Sı̄nā reports
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that in the 990s he visited the large library of the Sultan of Bukhara (in
present-day Uzbekistan), and found that it contained a catalogued collec-
tion of books of ‘the ancients’, which included a number of rare items, pre-
sumably in Arabic or Persian translation (Gutas [12] p. 28f). Most of this
material has now gone missing, together with the Greek originals. In the
10th century Al-Fārābı̄ wrote a lengthy Arabic commentary on the Prior
Analytics. Ibn Sı̄nā probably knew this work, but today very little of it sur-
vives, and nothing that will help us in this paper.

The longest and fullest of Ibn Sı̄nā’s writings in logic is the Logic section
of his encyclopedic Šifā’, written in the 1020s. It takes the form of a com-
mentary on Aristotle’s logic, some of it very close to Aristotle and some of
it apparently quite new. In Šifā’ the book Qiyās (‘Syllogism’ [15]) is his com-
mentary on the Prior Analytics. In Qiyās the section 9.6 is his commentary
on just twenty-three lines of the Prior Analytics, namely 46b40–47a22. These
are the opening lines of section i.32 of Prior Analytics.

Aristotle begins these twenty-three lines by announcing that his next
task is to ‘explain how we can lead deductions back into the figures stated
previously’ ([3] p. 50). He adds that this is a matter of analysing (analúoimen)
arguments that ‘have already been produced’ ([3] p. 50) into the three syllo-
gistic figures. The arguments could have been already produced ‘in writing
or in speech’ ([3] p. 51). He makes it clear that analysis includes both identi-
fying the underlying form of an argument, and also repairing the argument,
for example adding missing premises or removing redundancies.

Alexander of Aphrodisias and Philoponus both report Aristotle’s views
faithfully. Alexander adds that since the whole book is called Analytics,
this section on ‘analysis’ of arguments must be the heart of it. The modern
commentator David Ross agrees that the use of ‘analyse’ in this passage is
the source of the name Analytics, both for this book and for Aristotle’s work
Posterior Analytics on the theory of knowledge ([28] p. 400). He also calls
attention to the mathematical use of analúein to mean working backwards
from conclusions to premises. This usage agrees with the part of Aristotle’s
‘analysis’ that consists of finding a missing premise.

Ibn Sı̄nā’s section 9.6 falls into two parts. The first part, from para-
graph [9.6.1] to [9.6.5], more or less matches Aristotle’s text. The second
part, consisting of paragraphs [9.6.6] to [9.6.12], is completely new. It picks
up Aristotle’s brief remark that the syllogism being analysed may have a
premise missing, and it proposes a systematic way of repairing the hole. It
also expresses the outcome in terms of making the syllogism ‘h. ās. il’. This is
a central notion in Ibn Sı̄nā’s methodology, as follows.
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3 tah. s. ı̄l

There are two notions to be brought together here. One is tah. lı̄l, which is
the Arabic word that Ibn Sı̄nā uses to translate Aristotle’s análusis. Ibn Sı̄nā
regarded Prior Analytics i.32–46 as a manual of analysis, and he commented
on these sections in sections 9.6 to 9.9 of his Qiyās. The material in sections
9.7–9 is not directly related to that in 9.6, but it is needed for a full picture
of Ibn Sı̄nā’s understanding of analysis.

The second notion is tah. s. ı̄l, which means ‘making h. ās. il’. There are no
easy English translations of tah. s. ı̄l and h. ās. il, and even if there were, we
would still need to explain how the notions fit into Ibn Sı̄nā’s view of philo-
sophical activity.

At the most literal level, h. ās. il means ‘available for use’, so that tah. s. ı̄l
means ‘making available for use’. The word h. ās. il occurs nine times in Qiyās
9.6, and its grammatical relatives many times more. A thing is muh. as. s. al if
it has been made available for use. Here is a remarkable example of the
literal usage:

(1)

. . . some people demonstrate without any rule, like Archimedes
who demonstrated mathematically, since in his time logic wasn’t
yet available (lam yakun muh. as. s. al). (Qiyās [15] 15.10f.)

Ibn Sı̄nā has his history confused — Archimedes was born a hundred years
later than Aristotle. The idea that Archimedes demonstrated ‘without any
rule’ is puzzling. Roshdi Rashed (personal communication) suggests that
the point is that geometrical reasoning, of the kind that Archimedes used,
is not algorithmic.

For Ibn Sı̄nā, one of the main tasks of a philosopher was to apply tah. s. ı̄l to
the ideas of earlier philosophers. He refers several times to commentators
on Aristotle as muh. as. s. ilūn, people who make h. ās. il. A typical example is in
Išārāt:

(2)
Nothing but this has been stated by earlier scholars (muh. as. s. ilūn),
but in a manner overlooked by recent ones. ([20] I.9.2, p. 150 of
Inati.)

Likewise at Najāt [18] i p. 35.4 he refers to ‘Alexander and a number of later
muh. as. s. ilūn’. What were the commentators doing that counted as ‘making
h. ās. il’? The answer has to depend on exactly what they were making h. ās. il.
We find places where Ibn Sı̄nā describes the following things as being made
h. ās. il: (a) concepts, (b) propositions, (c) syllogisms, (d) knowledge. Usages
(b) and (c) are frequent in Qiyās 9.6.
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Usage (d) is illustrated by the following passage near the beginning of
Burhān:

(3)

Knowledge — whether it is obtained through reflective reason-
ing (fikr) or is h. ās. il without being obtained through reflective rea-
soning — is of two kinds. One of them is assent (tas. dı̄q) and the
other is conceptualisation (tas. awwur). Knowledge in the form of
assent, when it is obtained through reflective reasoning, becomes
h. ās. il to us through a syllogism. Knowledge in the form of con-
ceptualisation, when it is obtained through reflective reasoning,
becomes h. ās. il to us through a definition. ([16] 3.10–12.)

Here Ibn Sı̄nā sets out two independent classifications of kinds of knowl-
edge. The first classification is into those forms of knowledge which de-
pend on reflective thinking and those which come to us without our hav-
ing to think reflectively. The second classification, which is fundamental
throughout Ibn Sı̄nā’s logic and epistemology, is between two processes
that lead to knowledge. The first of these processes is conceptualisation
(tas. awwur); it leads us to having a concept, and Ibn Sı̄nā counts this as a
kind of knowledge. The second process is assent (tas. dı̄q), i.e. coming to
recognise that a proposition is true; it leads to knowledge of the fact stated
by the proposition. Although Ibn Sı̄nā in his first sentence uses h. ās. il only for
knowledge not dependent on reflective thinking, the rest of his text shows
that this is just an accident of style, and both kinds of knowledge can be
h. ās. il. In fact the passage suggests that for knowledge, being h. ās. il and being
‘obtained’ amount to the same thing.

The passage gives us strong clues about usages (a) and (b), because
tas. awwur leads to knowledge of concepts and tas. dı̄q leads to knowledge
of propositions.

Take concepts first. Here Ibn Sı̄nā’s usage slots in with a philosophical
usage that had been around already for many decades. The 9th century
translator of Aristotle, Ish. āq bin H. unain, rendered Aristotle’s ‘indefinite’
(aóristos) as gair muh. as. s. al, i.e. ‘not muh. as. s. al’ (Peri Hermeneı́as 16b14, trans-
lated at [21] p. 111). The implication is that a concept is muh. as. s. al if it is
determinate or well-defined. Kutsch [23] assembles a large number of ref-
erences where muh. as. s. al means this.

In (3) above, Ibn Sı̄nā is saying that a concept is made determinate or
well-defined by being given a definition. He certainly regarded this as one
of the main tasks of the Aristotelian commentators. At cIbāra [14] 2.9f he
refers to ‘those commentators who are experts on definition’ (al-muh. as. s. ilūn
min ’ahl s. ināca t-tah. dı̄d). Incidentally there is a close analogy here with Ernst
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Zermelo’s notion of a ‘definit’ criterion for class membership in mathe-
matics [33]. Just as Ibn Sı̄nā expected a commentator to define in genus-
differentia form, so Skolem proposed that Zermelo’s ‘definit’ should be
read in set theory as ‘first-order definable’.

We turn to propositions. Ibn Sı̄nā says in several places that we can’t
assent to a proposition until we have conceptualised its meaning, i.e. until
we understand it. Thus in Easterners:

(4)

So when the conceptualisation is made h. ās. il for us, assent to [the
proposition] is made h. ās. il for us [too]. But the conceptualisation
comes first; so if we don’t conceptualise a meaning then we don’t
get assent to [the proposition]. Sometimes we get the conceptu-
alisation without assent attached to it. ([19] 9.12–14.)

So there is a sense in which making a proposition h. ās. il is like making a con-
cept h. ās. il; we clarify the construction of the proposition and the meanings
of the words in it. But in both (3) and 4, Ibn Sı̄nā mentions another sense
in which a proposition can become h. ās. il, namely that we come to recognise
that it is true. In (3) he says that this happens when we deduce the proposi-
tion through a syllogism. We note that for this to work, the premises of the
syllogism must already be h. ās. il in this sense.

Ibn Sı̄nā regarded this second kind of making propositions h. ās. il as cen-
tral to the activity of philosophical commentators. The activity consists of
taking a claim made by Aristotle (for example), or on his behalf, and look-
ing to see how much of an argument is offered to support the claim. Then
one works on the argument to fill in gaps, remove irrelevances etc. etc. In
fact one performs exactly the ‘analysis’ that we saw Aristotle himself de-
scribing in Prior Analytics i.32ff. But while for Aristotle and Alexander this
kind of analysis was one of the general tools of logic, Ibn Sı̄nā thought he
could point to a large body of published work specifically devoted to it,
namely the philosophical commentaries. (There is a hint of this view al-
ready in Philoponus [24] p. 315 l. 20, where he says that the syllogism to be
analysed may come from ‘the ancients’.)

To fill in the history a little, the idea of commenting on a philosopher by
reducing that philosopher’s arguments to syllogistic form seems to have
surfaced first among the Middle Platonist commentators on Plato’s dia-
logues in the first century AD. It may have been encouraged by a desire
to show that Plato was just as good a logician as Aristotle (a view that Ibn
Sı̄nā explicitly rejects with contempt [17] pp. 114f). For example Alcinous
[1] 158.42–159.3 finds the following second-figure syllogism in Plato’s Par-
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menides 137d8–138a1:

(5)

A thing that has no parts is neither straight nor circular. A thing
that has a shape is either straight or circular. Therefore a thing
that has no parts has no shape.

(The second premise is obviously false. In any case Plato as I read him gives
‘straight’ and ‘circular’ as typical examples of shapes, not as an exhaustive
list. But Alcinous wasn’t the world’s greatest logician.)

Most of the surviving Roman Empire or Arabic commentaries on Aris-
totle, including those of Ibn Sı̄nā, do contain explicit reductions of partic-
ular arguments to syllogistic form. These reductions form a very small
proportion of the text of the commentaries. But probably Ibn Sı̄nā regarded
it as a criterion of the quality of a commentary that it should be straightfor-
ward to analyse the commentator’s arguments into syllogistic form. The
analogy with modern set theory applies here too. We don’t expect set theo-
rists to set out their arguments as first-order deductions from the Zermelo-
Fraenkel axioms, but we do take it as a criterion of a sound set-theoretic
argument that it should be routine to reduce the argument to this form.

By implication we have already said what it should mean to describe
a syllogism as h. ās. il. We make a syllogism h. ās. il by analysing it into a form
so that it makes its conclusion h. ās. il. This involves putting it into one of the
standard syllogistic moods, and ensuring that its premises are h. ās. il.

There are a couple of nuts-and-bolts points about tah. s. ı̄l that can be made
here as well as anywhere. First, the notion of h. ās. il is relational: a thing can
be h. ās. il for me but not for you. This is explicit in both (3) and (4). As far as
I’m aware, there is no notion in Ibn Sı̄nā of a thing being ‘h. ās. il in itself but
not for us’, such as we might expect in 13th or 14th century Scholastics.

And second, the set of propositions that are h. ās. il for you is dynamic:
you can add new items to the set by deducing them from things already in
the set. This causes some problems of terminology. In proof search we as-
sume we have a database T of sentences, and we search for proofs of given
sentences from assumptions that are in T . In Ibn Sı̄nā’s case the set T is the
set of propositions that are already h. ās. il. But it’s natural for him to say that
a successful proof search makes another proposition φ h. ās. il, and it could
look as if he is saying that φ is added to the database. Granted, Prolog has
a function assert which does exactly that. But adding φ to T is completely
different from deducing φ from things already in T , and it’s the latter that
is important for the proof search algorithm. The remedy is to distinguish
strictly between those propositions that were already h. ās. il and those that be-
come h. ās. il through application of the algorithm. Ibn Sı̄nā’s choice of words
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doesn’t always help us to make this distinction; see Problem 32 and the
note on it.

4 Mathematical prerequisites on syllogisms

4.1 Syllogistic sentences

In Qiyās [15] section 9.6 Ibn Sı̄nā discusses four kinds of sentence. He gives
Arabic examples, which I translate in (6) below. But for the logical theory
the Arabic renderings are less important than the truth conditions which he
sets out in cIbāra [14] section 2.2. He sometimes uses other Arabic wordings
for the same sentence types (see for example the note on Problem 14).

The four sentence types are as follows, together with their names and
their truth conditions:

(6)

• Universally quantified affirmative, ‘Every A is a B’. This
counts as true if there are As, but there are no As that are
not Bs, and false otherwise.

• Universally quantified negative, ‘No A is a B’. This counts
as true if there are no As that are Bs, and false otherwise.

• Existentially quantified affirmative, ‘Some A is a B’. This
counts as true if there is some A that is a B, and false oth-
erwise.

• Existentially quantified negative, ‘Some A is not a B’. This
counts as true in two cases: (a) there is an A that is not a B,
and (b) there are no As. Otherwise it counts as false.

The letters ‘A’ and ‘B’ are place-holders for two distinct ‘terms’ (h. add). For
present purposes we can think of terms as being the meanings of actual or
possible common nouns. Ibn Sı̄nā believed that when reasoning we manip-
ulate terms in our minds through linguistic expressions that mean them.
This allowed him to do the same in his logical theory, for example using
common nouns as surrogates for their meanings. A syllogistic sentence of
the form ‘Every A is a B’ is got by putting common nouns in place of ‘A’
and ‘B’, with the sole restriction that the two common nouns must have
different meanings. By ‘syllogistic sentence’ we will mean a sentence of
one of the four forms in (6).
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A syllogistic sentence can be identified by four features. The first is the
‘subject’ (mawd. ūc), which is the term put for ‘A’. The second is the ‘pred-
icate’ (mah. mūl), which is the term put for ‘B’. The third is the ‘quantity’
(kam), which is either ‘existentially quantified’ (juz’ı̄) or ‘universally quan-
tified’ (kullı̄). The fourth is the ‘quality’ (kaifa), which is either ‘affirmative’
(mūjib) or ‘negative’ (maslūb). For purposes of the ASM I treat a syllogistic
sentence as a 4-tuple

(7) [subject,predicate,quantity,quality]

using 0 for existentially quantified and affirmative, and 1 for universally
quantified and negative. (See (Def1) in Appendix C.)

The conditions for ‘Every A is a B’ to be true are satisfied exactly when
those for ‘Some A is not a B’ are not satisfied. So each of these syllogistic
sentences means the same as the negation of the other. We say they are
‘contradictories’ of each other, and we write φ̄ for the contradictory of φ.
Likewise ‘No A is a B’ and ‘Some A is a B’ are contradictories.

By ‘formal sentences’ I mean the expressions that we get if we put un-
interpreted 1-ary relation symbols (we call them ‘term symbols’) in place of
‘A’, ‘B’ in (6) above. The truth conditions translate at once into conditions
for a formal sentence to be true in a structure. So we have a model-theoretic
notion of entailment: a set T of formal sentences entails a formal sentence
ψ if and only if there is no structure in which all the formal sentences in T
are true but ψ is not true. Though this notion was unknown to Ibn Sı̄nā, it
gives us some mathematics that will be helpful for understanding various
things that Ibn Sı̄nā does.

For example it allows us to demonstrate all the cases where one for-
mal sentence entails another. They are as follows (where we write ⇒ for
‘entails’):

(8)

Every A is a B. Every B is an A.

⇓ ⇓

Some A is a B. ⇔ Some B is an A.

Some A is not a B. Some B is not an A.

⇑ ⇑

No A is a B. ⇔ No B is an A.

The top and bottom halves of this diagram are not independent. Each sen-
tence in the bottom half is the contradictory of its counterpart in the top
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half. Hence the arrows in the bottom half go the opposite way to those in
the top half. Ibn Sı̄nā recognised all the instances of these entailments as
examples of ‘following from’.

4.2 Inconsistent sets

A set T of formal sentences is ‘consistent’ if there is a structure in which
all the formal sentences in T are true, and ‘inconsistent’ if there is no such
structure. It is ‘minimal inconsistent’ if it is inconsistent but every proper
subset of it is consistent.

We can characterise the minimal inconsistent sets of formal sentences
as follows. First, by a ‘minimal circle’ we mean a set of formal sentences
arranged in a circle

(9) [φ1, . . . , φn] (n > 2)

where φ1 is immediately after φn in the circle, in such a way that every
term symbol appearing in the sentences occurs exactly twice, and the two
occurrences are in adjacent sentences in the circle.

Theorem 1 Every minimal inconsistent set of formal sentences can be arranged
into a minimal circle.

We say that a term symbol t in a formal sentence φ is either ‘distributed’
or ‘undistributed’ in φ as follows. If t is subject of φ then t is distributed in φ
if φ is universally quantified, and undistributed otherwise. If t is predicate
of φ then t is distributed in φ if φ is negative, and undistributed otherwise.

Theorem 2 A minimal circle C is inconsistent if and only if it meets the following
two conditions:

1. Each term occurring in sentences of C has at least one distributed occur-
rence.

2. Exactly one of the sentences in C is negative.

These two theorems are equivalent to results in §46 of Thom [31], which
Thom proves proof-theoretically. But they can be proved directly from the
truth conditions in (6). Ibn Sı̄nā himself probably knew Theorem 1 from ex-
perience, though it’s hard to see how he could have proved it. On the other
hand he almost certainly didn’t know Theorem 2. Any form of this result
involves partitioning occurrences of terms in syllogistic sentences into the
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two classes that we called distributed and undistributed, and no such par-
tition has been found in Ibn Sı̄nā’s logical writings.

Now given an inconsistent circle as in (9), we can take out any one sen-
tence, say φi. Then the remaining sentences entail φi; moreover all entail-
ments between formal sentences, where there are no redundant sentences
in the entailing set, are formed in this way. List the entailing sentences in
their order in the circle:

(10) [φi+1, . . . , φn, φ1, . . . , φi−1]

Then the sequence (10) has the property that every term symbol occurs
twice, in two adjacent sentences of the sequence, except for one term sym-
bol that occurs only in the first sentence and another one that occurs only in
the last sentence. We describe a sequence (10) with this property as a ‘link-
age’ (qarı̄na, though strictly Ibn Sı̄nā uses the term only for such sequences
of length 2). The sequence (10) and the sentence φi together form a ‘formal
separated syllogism’ whose ‘premises’ (muqaddamāt) are the sentences in
(10) and whose ‘conclusion’ (natı̄ja) is the sentence φi. The expression ‘sep-
arated syllogism’ (qiyās mafs. ūl) is from Ibn Sı̄nā (Qiyās [15] p. 436.1), though
strictly he uses it only when there are more than two premises.

So we can speak of a ‘separated syllogism’, meaning an entailment be-
tween syllogistic sentences, got by taking a formal separated syllogism and
replacing the distinct term symbols by distinct terms. The separated syllo-
gisms that Ibn Sı̄nā recognises all have the property that their premises
entail their conclusion (model-theoretically); in his terminology the conclu-
sion ‘follows from’ (yalzam) the premises. But later in this section it will
take us some time to unpick the relationship between Ibn Sı̄nā’s notion of
following from and our notion of entailment.

But first we turn to the notion that the proof search algorithm is meant
to deal with: separated syllogisms with a premise missing. Suppose for ex-
ample that we have a separated syllogism with premises [φ1, . . . , φm] and
conclusion χ, and we remove one or more adjacent premises, say φj and
φj+1. In the inconsistent circle the contradictory of χ belongs at the begin-
ning or the end; we will put it at the end:

(11) [φ1, . . . , φj−1, φj+2, . . . , φm, χ̄].

Now we can describe the gap as follows. It comes immediately after the
(j − 1)-th sentence in the sequence (11); we call the number j − 1 the ‘gap
site’. If φ1 and φ2 had been removed, the gap would be immediately after
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χ̄, which is the (m− 1)-th sentence in [φ3, . . . , φm, χ̄], so the gap site would
be m− 1. Also when the linkage (11) contains at least two sentences, there
is a unique term shared by the lefthand missing sentence and the one to
the left of it; we call this term the ‘left edge’ of the gap. Likewise there is a
unique term shared by the righthand missing sentence and the one to the
right of it in (11); we call this the ‘right edge’ of the gap.

Thus in Problem 20 Ibn Sı̄nā gives the following example:

(12)
Conclusion (understood from Problem 12) ‘Some C is not an A’.
Premises ‘Some D is a C’ and ‘No A is a B’.

Putting the contradictory of the conclusion at the end gives the sequence

(13) [ Some D is a C’, ‘No A is a B’, ‘Every C is an A’ ].

The gap site is 1, the left edge is D and the right edge is B. The definitions
just given are more formal than Ibn Sı̄nā himself uses. But he provides
several types of example with different gap sites. At Problem 7 he uses the
left and right edges of the gap. In this problem he does also include an
irrelevant term, and clearly he knows that it’s irrelevant; perhaps he wants
to encourage the student to work out that only the left and right gaps are
needed at that stage in the algorithm. (See the notes on Problem 7.)

Ibn Sı̄nā doesn’t consider the case where all the premises are missing
— which is actually the case that corresponds to the proof search problem
for Prolog. In this case the gap comes immediately after the contradictory
of the conclusion, so the gap site is 1. But with only one sentence present,
there is no way of telling which of its terms is the left edge and which is the
right. We need a definite choice; I stipulate that in this case the left edge is
the subject of the conclusion and the right edge is its predicate. (This is not
quite arbitrary; it reconciles two messages that Ibn Sı̄nā sends about which
end of the gap to start with when we fill it. Namely in Qiyās [15] section
9.3 he works from the left side to the right, and when finding middles in
section 9.4 he starts with the subject of the conclusion.)

Identifying the gap site and the left and right edges is necessary for the
algorithm, so I made it a module of the ASM. See (ASM3) in Appendix C for
the module DESCRIBE. I haven’t bothered to spell out the formal definition
in cases like this where there is a purely book-keeping manipulation that
can be specified unambiguously in English.

4.3 Simple syllogisms

A ‘simple syllogism’ (qiyās bası̄t. ) is a separated syllogism with two premises.
Ibn Sı̄nā often abbreviates this to ‘syllogism’.
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The term which occurs in both premises of a simple syllogism is called
the ‘middle’ (wast.). The term which is subject of the conclusion is called
‘lesser’ (asḡar), and the premise containing it is the ‘minor’ (s.uḡrā). The
term which is predicate of the conclusion is called ‘greater’ (akbar), and the
premise containing it is the ‘major’ (kubrā).

Buried in the definition of ‘simple syllogism’ there is the condition that
the conclusion follows from the premises. But we remarked earlier that
Ibn Sı̄nā’s notion of ‘follows from’ is some way distant from the model-
theoretic definition of entailment. In the case of two-premise arguments he
doesn’t recognise as syllogisms any that are not model-theoretically valid.
But he puts two further requirements, as follows.

Sometimes Ibn Sı̄nā speaks as if a syllogism consists of just the premises.
For this terminology to work, there has to be a unique way of reading off
the conclusion from the premises. By Theorem 3 below, if two syllogistic
premises do entail a syllogistic conclusion, then there is a strongest conclu-
sion that they entail. But there are two cases where this strongest conclu-
sion is not uniquely determined, namely ‘Some A is a B’ (which is logically
equivalent to ‘Some B is an A’) and ‘No A is a B’ (which is logically equiv-
alent to ‘No B is an A’. In these two cases Ibn Sı̄nā resolves the question by
the following condition:

Premise order condition The minor premise is listed before the major
premise.

In other words, the subject of the conclusion is the term that occurs in the
first premise. In fact Ibn Sı̄nā follows this rule uniformly for all simple
syllogisms, even where there is no ambiguity to be resolved.

Thus for example at Qiyās [15] 114.6 he gives the mood Cesare in the
form

(14) Every C is a B and no A is a B, so no C is an A.

while at 115.17 he cites Camestres:

(15) No C is a B and every A is a B, so no C is an A.

One of the very few counterexamples to this convention is in Problem 3
below, where he infers ‘No C is a D’ from ‘Every D is a B’ and ‘No C is a
D’ in that order. This is probably an accident of his exposition; see the note
on that Problem.

Ibn Sı̄nā also imposes a further condition, which rules out what are
sometimes known as ‘fourth figure syllogisms’:

14



Fourth figure condition The middle term is not both predicate of the first
premise and subject of the second premise.

At Qiyās 107.12 he describes arguments that violate the fourth figure condi-
tion as ‘unnatural, unacceptable and unsuitable for the practice of serious
study’.

With the help of Theorem 2 one can show that a model-theoretically
valid simple syllogism which fails the fourth figure condition must have a
premise of one of the following three forms: ‘Some A is a B’, ‘No A is a B’,
or ‘Every A is a B’ where the syllogism would still be model-theoretically
valid if we replaced this premise by ‘Some A is B’. So it’s always possible
to bring such a syllogism into a form that Ibn Sı̄nā accepts, by using the
implications in (8). This will involve a ‘conversion’ (caks), which swaps
the order of the two terms in one premise. Ibn Sı̄nā notes at Problem 59
that a positive solution for the problem is impossible unless one makes
a conversion in the premise. At Problems 29 and 44 he comments that
conversion makes no difference to the outcome. Note also his remark about
conversion at 466.3f.

Following Aristotle, Ibn Sı̄nā classifies the possible shapes of simple
syllogisms into three figures; the first and second figures have four shapes
each, called ‘moods’, and the third figure has six ‘moods’. Ibn Sı̄nā expects
his students to know this catalogue by heart. In fact at 466.4ff he says that a
student who hasn’t memorised the catalogue is not going to be able to fol-
low the algorithm. At first sight this is puzzling, because his account of the
algorithm doesn’t ever seem to use the figures and moods. Closer inspec-
tion reveals one hidden reference to ‘first [figure]’ in Problem 3, and this
reference shows what is going on. Ibn Sı̄nā expects his students to be able
to recognise, given two syllogistic sentences φ1 and φ2, whether there is a
syllogism with these as its premises; and where there is such a syllogism, to
state its conclusion. In the style of education that he favours, the students
memorise this information, and he expects them to do it in terms of figures
and moods. (But don’t assume that he would have used Theorem 2 if he
had known it. We come back to this in subsection 6.2 below.)

To carry out the proof search algorithm, the student needs to be able
to find, for any pair of sentences [φ1, φ2] that are the premises of a syllo-
gism, the strongest consequence of these premises. In our ASM the function
consequence will perform this operation; we leave it to the implementer to
decide how to compute the values of the function. See (Def3) in Appendix
C. A sequence of sentences that are not the premises of any separated syl-
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logism is said to be ‘sterile’ (caqı̄m — again we generalise Ibn Sı̄nā’s us-
age from two premises to any number). When [φ1, φ2] is sterile, we give
consequence(φ1, φ2) the formal value sterile.

We mentioned a theorem about strongest consequences. It says the fol-
lowing:

Theorem 3 Let T be a consistent set of formal sentences andC the set of all formal
sentences ψ such that T entails ψ and there is no proper subset of T that entails
ψ. Then if C is not empty, C contains a sentence ψ which entails all the other
sentences in C .

Theorem 3 can be proved from Theorem 2. The sentenceψ in the conclu-
sion of Theorem 3 is what we have been calling the ‘strongest consequence’
of T ; it’s unique up to the equivalences in (8).

For simple syllogisms, i.e. the case where T has size 2, Theorem 3 seems
to have been common knowledge in Ibn Sı̄nā’s time, and it would have
been easy to prove by enumerating the possible cases. Probably the better
logicians had a shrewd idea that it was true for any size of T , but I don’t re-
call seeing it stated in the middle ages, and I doubt they could have proved
it.

By cutting the inconsistent circle at a different place, Theorem 3 yields
a corollary:

Corollary 4 Let T be a consistent set of formal sentences and ψ a formal sentence.
LetK be the set of all sentences χ such that T ∪{χ} entails ψ but there is no proper
subset T ′ of T such that T ′ ∪ {χ} entails ψ. Then if K is not empty, it contains a
sentence χ which is entailed by each of the other sentences in K .

We call the sentence χ in the conclusion of Corollary 4 the ‘weakest fill’;
it’s unique up to the equivalences in (8).

4.4 Connected syllogisms

Ibn Sı̄nā never attempts to apply any definition of ‘follows from’ directly
to separated syllogisms with more than two premises. For simple syllo-
gisms he understands ‘follows from’ in terms of how our minds manipu-
late ideas, and it would hardly be plausible to assume that we could hold
in our minds a set of a thousand premises. Instead he maintains that a
separated syllogism is shorthand for a more complex kind of syllogism,
namely a tree of simple syllogisms. At Qiyās [15] p. 436.1 he describes such
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a tree as a ‘connected syllogism’ (qiyās maws. ūl). He explains at Qiyās [15] p.
442.8 that separated syllogisms are so-called because in them the interme-
diate conclusions (the conclusions of all the simple syllogisms except the
one at the root of the tree) are separated from the premises (presumably he
means the premises at the leaves of the tree), so that the premises are men-
tioned explicitly but the intermediate conclusions are left out. At Burhān
[16] 141.15ff he comments that a connected syllogism with a thousand in-
termediate steps is no big deal provided we are ‘mentally prepared for the
drudgery’.

So part of the job of analysis is to find these intermediate conclusions.
Ibn Sı̄nā discusses an example in detail at Qiyās section 9.3, p. 442.8–443.13.
The text is corrupt, but on one reconstruction Ibn Sı̄nā is discussing the
separated syllogism with premises

(16)
‘Every J is a D’, ‘Every D is an H’, ‘Every H is a Z’, ‘Every Z is
an I’

and conclusion ‘Every J is an I’. The intermediate conclusions are ‘poten-
tial’, he says. To find them, we start with two explicitly stated premises
and draw a conclusion φ from them, and then we form a syllogism with
φ as first premise and another of the explicit premises as second premise,
and so on. An example would be to prove ‘Every J is an H’ first, and then
‘Every J is a Z’. He warns us against starting with the second and third
premises to deduce ‘Every D is Z’ — this is not ‘the arrangement that we
chose’. (He adds that we could have chosen a different arrangement.)

Exactly this procedure, starting from the lefthand end, appears in Prob-
lem 3. (In Arabic of course it is the righthand end. I won’t say this again.)
Ibn Sı̄nā takes a supposed separated syllogism of length 3 with the middle
premise missing. He suggests a way of filling it, so that the three premises
are

(17) ‘No C is a B’, ‘Every D is a B’ and ‘Every A is a D’.

He first infers ‘No C is a D’ from the first two premises, and then he infers
the required conclusion ‘No C is an A’ from this and the third premise.
Since this is one of the first problems, it’s presumably meant as a strong
clue about the procedure to be followed.

So the procedure appears in the ASM of Appendix C as module (ASM4),
called SYNTHESISE. Ibn Sı̄nā’s word for ‘synthesis’ is tarkı̄b, which means
forming a compound; he also uses it for the compound formed. At Qiyās
[15] p. 434.11 he explains that ‘synthesising a syllogism’ means forming a
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connected compound syllogism, which is the main thing that this module
does.

Now it’s clear that if φ1, . . . , φ5 are formal sentences such that φ1 and
φ2 entail φ4, and φ3 and φ4 entail φ5, then φ1, φ2, φ3 together entail φ5. But
Ibn Sı̄nā needs more than this. His procedure is also meant to tell us when
the raw materials can’t be filled out into a syllogism. Suppose we infer φ4

from φ1, φ2 and then find that φ5 doesn’t follow from φ3, φ4, what does this
show? How do we know we couldn’t have proved φ5 from φ1, φ2, φ3 by
choosing φ4 differently, or by starting at the righthand end? If Ibn Sı̄nā had
tried to prove the correctness of his algorithm, he would have had to face
this question.

In fact there is a positive answer, at least in terms of model-theoretic
entailment. The heart of the matter is the following result.

Theorem 5 Suppose [φ1, . . . , φn] and [ψ1, . . . , ψm] are linkages of formal sen-
tences. Then the following are equivalent:

(a) [φ1, . . . , φn, ψ1, . . . , ψm] forms an inconsistent minimal circle.

(b) The set ψ1, . . . , ψm has a strongest consequence θ, and [φ1, . . . , φn, θ] is an
inconsistent minimal circle.

The theorem tells us that (provided there are no irredundancies in the
premises) we can take any segment of the premises of a separated syllo-
gism, and shrink it down to its strongest consequence. The result will still
be a separated syllogism entailing the same conclusion. At least this is true
for model-theoretic entailment.

But consider for example the syllogism

(18)
Every B is a C . Every D is a B. Some D is an A. Therefore some
C is an A.

Model-theoretically the three premises do entail the conclusion. But if we
try to build a connected syllogism, starting from the lefthand end as in Ibn
Sı̄nā’s examples, we immediately hit a problem. The first two premises
violate the fourth figure condition.

A possible way around this is to start by drawing a conclusion from the
second and third premises. By the premise order condition this conclusion
must be ‘Some B is an A’, by the third-figure mood Disamis. So we have
the intermediate syllogism

(19) Every B is a C . Some B is an A. Therefore some C is an A.
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This again is a valid instance of Disamis.
Hence Ibn Sı̄nā’s procedure for constructing a connected syllogism from

a separated one, in the form in which it appears in the Problems of his sec-
tion 9.6, is inadequate. In fact he hits exactly this inadequacy at Problem 33.
His solution is to switch the order of the first two premises in (18). The fact
that he does this, rather than plough ahead with a different justification of
the syllogism, is confirmation that he expects the student to start by draw-
ing a conclusion from the two leftmost premises. This could be because he
works from left to right, or because he shrinks the sequence of premises
before filling the gap. Either way, this will fit our reading of the algorithm.

Until this glitch is sorted out, some doubt remains about exactly what
separated syllogisms Ibn Sı̄nā would accept. Perhaps closer examination of
Qiyās [15] section 9.3 will settle the point.

Theorem 5 merits a couple of further comments.
First, when we are trying to fill a gap in a sequence of premises, Theo-

rem 5 tells us that if we can fill it at all without making any of the premises
redundant, then we can fill it with a single sentence. Then Corollary 4 adds
that there is a weakest single-sentence fill χ. When looking for linkages to
fill the gap, we can confine ourselves to linkages that entail χ. It’s not clear
how far Ibn Sı̄nā was aware of this. For example at Problem 9 he notes that
both ‘Every D is a B’ and ‘Some D is a B’ will fill the gap, but he fails to
note that we have a better chance of finding a proof of ‘Some D is a B’ (the
weakest fill) than of ‘Every D is a B’. (But as always, maybe he is encour-
aging his better students to see this point for themselves.)

The second comment is a technical warning. Suppose m = 2, ψ1 has
terms A, B and ψ2 has terms B, C . Because of Ibn Sı̄nā’s assumptions (6)
about truth when a term is empty, θ in the theorem need not be logically
equivalent to ∃B(ψ1 ∧ ψ2). (Syllogisms don’t have quantifier elimination.)
So passing to θ might throw away information about A and C . But we can
show that the lost information is recoverable from the rest of the circle.

4.5 Other kinds of syllogism

In [9.6.4] and [9.6.5] of Qiyās 9.6, Ibn Sı̄nā refers briefly to some other kinds
of syllogism.

Earlier in the Qiyās ([15] p. 106) Ibn Sı̄nā has distinguished between two
kinds of syllogism which he calls respectively ‘recombinant’ (iqtirānı̄) and
‘duplicative’ (istit

¯
nā’ı̄). A recombinant syllogism has two premises, each of

them built out of two parts; one of these parts is the same in both premises.
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The conclusion is formed by recombining the two remaining parts. Simple
syllogisms as in subsection 4.3 above fit this description. But so do some
propositional (šart. ı̄) syllogisms, for example

(20) If p then q. If q then r. Therefore if p then r.

Ibn Sı̄nā’s view is that recombinant syllogisms are a generalisation of sim-
ple syllogisms, and that generally speaking the rules for simple syllogisms
transfer to recombinant syllogisms too. (This is presumably what he has in
mind at 468.7.)

Duplicative syllogisms are propositional. They have two premises. One
of the two premises has two parts. The other premise consists of one of
these two parts (or its contradictory), and the conclusion consists of the
other part (or its contradictory). The shorter premise and the conclusion
are said to be ‘duplications’ (i.e. of parts of the longer premise). Besides
modus ponens:

(21) If p then q. p. Therefore q.

this description covers inferences like:

(22) Not both p and q. p. Therefore not q.

Ibn Sı̄nā regards duplicative syllogisms as incomplete in themselves; they
only make sense as part of a longer argument. There seems to be no natural
way of generalising his proof search procedure to them.

Ibn Sı̄nā classifies binary sentence connectives and the compounds that
are formed using them as ‘meet-like’ (muttas. il) or ‘difference-like’ (munfas. il).
This is a soft classification based on some supposed resemblance to meet
(‘and’) or difference (exclusive ‘or’). But he doesn’t use the classification
consistently, and my present impression is that he never settled on a satis-
factory principle for classifying binary sentence connectives. The ‘If . . . then’
in (21) counts as meet-like, while ‘Not both’ in (22) counts as difference-
like; so these two syllogisms are respectively meet-like duplicative and
difference-like duplicative.

There is more on Ibn Sı̄nā’s propositional syllogisms in Shehaby [29], to-
gether with a translation of the propositional part of Qiyās. Shehaby trans-
lates the technical terms differently: he has ‘conjunctive’ for ‘recombinant’,
‘exceptive’ for ‘duplicative’, ‘conditional’ for ‘propositional’, ‘connective’
for ‘meet-like’ and ‘separative’ for ‘difference-like’.
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5 Extracting the algorithm

Can we be sure that Ibn Sı̄nā really meant to describe an algorithm for proof
search?

Ibn Sı̄nā himself doesn’t say anything to indicate that he regards the
procedure that he is teaching as comparable with the kinds of algorithm
known to medieval Arabic mathematicians (see subsection 6.2 below). He
does say in [9.6.1] that we need ‘rules’ (qawānı̄n, plural of qānūn) to guide
us in analysis. But in [9.6.2] he explains this as ‘rules in the form of dos and
don’ts’, which doesn’t sound like an algorithm. At Qiyās [15] p. 537.3 he
uses the same phrase ‘dos and don’ts’ for advice about how to conduct a
debate.

In fact the passage that I interpret as describing an algorithm (para-
graphs [9.6.6] to [9.6.11]) consists of 64 problems, with answers given and
some remarks about how the answers are found. The problems are divided
into four groups according to their patterns; Ibn Sı̄nā explains the patterns
and tells the reader ‘Do the remaining cases of this pattern for yourself’
(463.12, 464.12, 466.2, 467.7). The problems are introduced without any ex-
planation of what they are for, apart from the fact that they appear in a
discussion of analysis. At the end of them Ibn Sı̄nā comments (468.4f):

(23)
When you put the steps in this order, as I have shown you, you
will reach the terms, figures and moods.

Strangely the 64 problems make no mention at all of syllogistic moods, and
only one mention of figures. But figures and moods are a classification
that makes sense only for simple syllogisms, so Ibn Sı̄nā is implying here
that by ‘putting the steps’ in the right order we will be able to reduce the
raw material in the problems to simple syllogisms. Since no new kinds of
‘step’ are described here, it seems to follow that Ibn Sı̄nā means we can
use steps already discussed earlier in Qiyās to reduce the raw material to
simple syllogisms. This exactly matches the use of the module SYNTHESISE

in our ASM, which rests on procedures described in Qiyās section 9.3. So it
confirms that we are on the right track.

In any event, paragraphs [9.6.6] to [9.6.11] are clearly intended to teach
the reader a procedure for taking data of a certain kind and coming up with
answers to certain questions about the data. The decision whether to call
this procedure an algorithm is for us, not for Ibn Sı̄nā. Our choice should
rest on three issues: (1) Is the class of data to which the procedure applies
well-defined? (2) Is it clear what question or questions the procedure is
meant to answer? (3) Is the procedure mechanical?
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I take these issues in turn. Of course the procedure defined by the ASM
in Appendix C is an algorithm, but we need to ask how much of that algo-
rithm is already in Ibn Sı̄nā’s text.

5.1 The class of input data

The 64 problems all share a common format. They involve syllogistic sen-
tences with letters for terms; but we are not told what the letters stand for.
So there is no loss in thinking of the sentences as formal sentences, pro-
vided that we don’t impose our definition of entailment on Ibn Sı̄nā.

Each problem begins with a syllogistic sentence called the ‘goal’ (mat.lūb),
except where we have to understand that the goal is the same as in the
previous problem. Then follows a sequence of one or more formal sen-
tences. Ibn Sı̄nā’s commonest description for this sequence is that ‘you
have’ (kāna cindak) the sentences in it; he uses this or closely similar phrases
in 38 problems. The only name that he offers for the sequence is ‘thing
found’ (mawjūd, in 8 problems). This word has a variety of meanings in Ibn
Sı̄nā’s logic, and another variety in his metaphysics. But since he also says
in 6 problems that ‘you have found’ (wajadta) the sequence, I assume it just
means ‘what has been found’. For the sake of English style I shorten this to
‘datum’; I follow Ibn Sı̄nā’s lead in using the singular even when there is
more than one sentence in the sequence.

So each problem has a goal and a datum. In every case but one, the
sequence consisting of the datum followed by the goal is a linkage in the
sense of subsection 4.2 above. The one exception is Problem 33, where the
linkage order would run foul of the fourth figure condition (see the note on
the Problem). This exception shows that Ibn Sı̄nā does expect the student
to be able to handle a larger class of inputs than the ASM in Appendix C is
designed for. But I think we can regard this Problem as a freak case.

Ibn Sı̄nā indicates at 464.12f, 465.5, 466.6, 467.7 and 467.10 that we should
think of the datum as having two parts, one that has a sentence containing
the subject of the goal and one with a sentence containing the predicate of
the goal; except that one of these two parts may be empty. What he de-
scribes here is exactly the gap site that we calculated in subsection 4.2; the
part of the datum linked to the subject is precisely the part before the gap
indicated by the gap site.

It’s curious that Ibn Sı̄nā explains this structure of the datum only after
the 26th problem. Perhaps some text has gone missing, but I doubt it. He
has a tendency to explain himself only after he has given you a chance to
work out for yourself what he must have meant. My impression is that the
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Arabic mathematicians of his time would have regarded this as poor style.
All four kinds of formal sentence appear in Ibn Sı̄nā’s problems, in a

wide variety of combinations. So it seems that the class of properly ordered
possible goal-datum pairs is well defined, except perhaps for the questions
of length and of the number of gaps. To begin with length, in all Ibn Sı̄nā’s
examples the datum has length 1 or 2. Did he intend his procedure to apply
only in these cases?

I believe not, for two reasons. The first is that in Problems 1 and 2 he
points out that if we can’t find a suitable single sentence to fill the gap, we
may need to look for a pair. He doesn’t say what happens next, but one
reasonable way forward would be to guess (say) the first sentence of the
pair and put it into the datum. Finding the second sentence would then
be the original problem but with a longer datum. (And so on recursively,
though he never says this.)

Strictly this is not the only way forward. As we will see, the question
of looking for a pair of sentences only arises after we have discovered a
weakest fill φ for the gap in the original datum. Then by Theorem 5 above,
it suffices to continue with φ as new goal and an empty datum. But even
this would add 0 to the possible lengths of data. I haven’t followed this
route, because it would imply some mechanism for feeding back the result
of the calculation with φ as goal into the original problem.

But the case of length 0 is interesting anyway, not least because it cor-
responds to the Prolog proof search problem. For that reason I set up the
ASM to handle data of length 0. Ibn Sı̄nā himself may have reckoned that
he had said enough about the case of data of length 0 already in Qiyās [15]
section 9.4 ‘On obtaining premises, and on tah. s. ı̄l of syllogisms with a given
goal’.

The second reason for doubting that Ibn Sı̄nā intends a restriction to
lengths 1 and 2 is his statement at 465.2 that he will deal with the case of
‘more than two premises’ in the appendices. We don’t have the promised
appendix; see the Note on this passage. Of course he might have said in
the appendix that these longer data can be handled, but only by a different
procedure. I think this is unlikely, for the first reason just given.

Nevertheless there is a good reason for Ibn Sı̄nā to concentrate on the
case of length 6 2. If the datum has length greater than 2, it always contains
two adjacent sentences that share a term. So we can reduce the length of
the datum immediately, by replacing these two sentences by their strongest
consequence — unless they are sterile, in which case the problem has no
positive solution. We can’t be sure that Ibn Sı̄nā intended this way of work-
ing, but it makes good sense and I have built it into the ASM.
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The other possibility is that Ibn Sı̄nā intends his procedure to apply
where the datum contains more than one gap, or perhaps even when it
contains no gap at all. He does in fact discuss the case of more than one
gap in paragraph [9.6.7]. His view is that it can be handled but at the cost
of a more complicated procedure, which again he will describe in the ap-
pendices. The main thing we would need to do in order to extend our ASM
to more than one gap would be to incorporate some further machinery to
control the search; see subsection 6.2 below for a discussion of what would
be required. Presumably Ibn Sı̄nā’s appendix would have said something
about this too. The case of no gaps is covered by the procedures of Qiyās
section 9.3, which we have incorporated into the module SYNTHESISE; so
this case is at least implicitly in Ibn Sı̄nā’s algorithm already.

In his initial remarks on analysis in [9.6.1], Ibn Sı̄nā says that the text to
be analysed may contain ‘something superfluous’, and our rule will need
to tell us how to ‘strip off defects’. This suggests that the procedure should
also eliminate redundant parts of the datum. None of the 64 problems sug-
gests any way of doing this. Indeed it’s not clear what the aim would be if
Ibn Sı̄nā did allow this. One could always start by removing the entire da-
tum and working from the goal alone; would this count? If not, would the
aim be to throw away as little as possible of the datum? This could lead to
serious complexities. So I think we can sensibly assume that the procedure
is not meant to eliminate redundant parts of the datum.

5.2 What question is answered?

Alongside each one of his 64 problems, Ibn Sı̄nā provides an answer. With
trivial variations, all the answers take one of two forms. The affirmative
form is: If the sentence χ is attached (ittasal, 27 problems) then ‘it has been
made h. ās. il’ (qad h. us. s. il, 17 problems). Usually Ibn Sı̄nā doesn’t tell us what
has been made h. ās. il. But at Problems 8 and 9 he does: it’s the syllogism.
(See also Problem 1: ‘your syllogism is in good order’.) The translation
below reflects this.

By ‘attached’ he clearly means ‘put into the gap in the datum’. So the
procedure involves an operation that does this. I was tempted to call this
operation ‘attach’, but unfortunately this is a reserved word in the vocab-
ulary of ASMs. Since the operation is a syntactic triviality, I made it not a
module but a basic function: (Def5) in Appendix C.

The negative form of answer is: ‘It can’t be used’ (lam yuntafac bih, 23
problems). This time we can hardly expand to ‘The syllogism can’t be
used’, because in these problems there is no syllogism. A more accurate
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expansion would be ‘The goal and datum can’t be used to generate a h. ās. il
syllogism’; but for brevity I stick with ‘it’ in the translation.

The problems with a negative answer are exactly those in which there
is no sentence that can be put in the gap of the datum so as to yield a sepa-
rated syllogism with the goal as conclusion. Also in the problems with an
affirmative answer Ibn Sı̄nā nearly always names a sentence that can be put
in the gap so as to yield the required syllogism. So this is at least one of the
aims of the procedure:

(24)

Determine whether or not there is a sentence χ that can be put into the
gap of the datum so that the datum becomes the premise sequence of a
separated syllogism whose conclusion is the goal. When the answer is
Yes, supply a sentence χ with this property.

I call this the ‘logical task’. Note that it makes no reference at all to sen-
tences that are already h. ās. il.

Note also that the logical task, as stated, doesn’t include classifying the
resulting syllogism by means of figures and moods. We saw earlier that in
fact Ibn Sı̄nā’s procedure, if we have reconstructed it correctly, does yield
enough information to convert the separated syllogism into a connected
one, and then the figures and moods can be read off. So we could add a
further module to the ASM which delivers the connected syllogism with
its simple syllogisms labelled by figure and mood. But this would mean
introducing a new datatype for connected syllogisms, and it would be just
a unit bolted onto what is already in the ASM. So I take a lead from Ibn Sı̄nā,
who mentions in [9.6.12] that the procedure will yield this information but
gives no further details. I add only that one possible implementation of
the ASM is in terms of diagrams written on paper, very likely as Ibn Sı̄nā’s
students would have drawn them. These diagrams would almost certainly
have included the connected syllogisms.

But Ibn Sı̄nā also says a number of other things that only make sense if
he is expecting the procedure to deliver a syllogism that is h. ās. il in the sense
we studied in section 3 above. First and foremost, there is the wording that
we quoted in the affirmative case: ‘[the syllogism] has been made h. ās. il’.
Add to this that in 10 problems he says that the premises in the datum are
h. ās. il; this is irrelevant for the logical task. In 6 of the problems with an
affirmative answer, he requires that the attached sentence is ‘true’ or ‘true
for you’ or ‘clear’ (bayyin — this must mean ‘clearly true’). Finally there are
two problems (1 and 2) where Ibn Sı̄nā finds a sentence χ that solves the
logical task, and then adds that if the sentence is not ‘clear’ or true, then it
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doesn’t solve the problem and one ‘needs a middle’ (i.e. has to look for a
two-sentence filling for the gap).

So there is clear evidence that Ibn Sı̄nā also has in mind another task:

(25)

Given that the datum consists of sentences that are already h. ās. il, de-
termine whether or not there is a sequence of sentences [χ1, . . . , χm]
that are already h. ās. il, which can be put into the gap of the datum so
that the datum becomes the premise sequence of a h. ās. il separated syl-
logism whose conclusion is the goal. When the answer is Yes, supply a
sequence [χ1, . . . , χm] with this property.

I call this the ‘tah. s. ı̄l task’. The two tasks are connected by the fact that a
negative answer to the logical task implies a negative answer to the tah. s. ı̄l
task, but otherwise the tasks are independent.

I think it’s inconceivable that Ibn Sı̄nā was in any way confused about
the difference between the logical task and the tah. s. ı̄l task. But I wouldn’t
put it past him to be deliberately ambiguous in hopes of catching both tasks
under the same general description. There is some evidence of deliberate
ambiguity. In subsection 5.1 we interpreted the word ‘found’ (mawjūd) as
meaning datum, i.e. ‘the thing you found in front of you when you were
given the problem’; but it would be entirely in keeping with Ibn Sı̄nā’s
logical vocabulary if we read it as ‘found to be true’, i.e. h. ās. il. Likewise the
phrase ‘you have’ (kāna cindak) could also mean ‘according to you’, in other
words, ‘it’s h. ās. il for you that . . . ’.

It would also be in character for Ibn Sı̄nā to leave the ambiguity as a
deliberate trap for idle or unintelligent students.

In sum, we have identified two tasks that the procedure is meant to
perform. The logical task is well-defined apart from the uncertainty about
what separated syllogisms Ibn Sı̄nā accepts. But at least we can rigorously
check the correctness of Ibn Sı̄nā’s own solutions of his 64 problems. The
h. ās. il task is well-defined apart from the same uncertainty about separated
syllogisms, though it does require us to know what sentences are ‘already
h. ās. il’. The set of things that are already h. ās. il is the counterpart of the set of
clauses of the Prolog program in the Prolog case. Börger and Rosenzweig
[5] build this set of clauses into their ASM through a predicate PROGRAM
and a basic operation clause list. I prefer not to do that here, because
it would pre-empt a question we have to discuss in a moment, namely
whether Ibn Sı̄nā considers that the set of sentences that are already h. ās. il
can be read off mechanically.
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5.3 Is the procedure mechanical?

Ibn Sı̄nā doesn’t ringfence his procedure; we have some discretion to decide
what counts as part of it and what involves an appeal to the environment.
The real question here is whether the procedure has a purely mechanical
core, and if so, what that core contains.

Most of the procedure is quite obviously mechanical. Although Ibn Sı̄nā
refers at [9.6.12] to ‘putting the steps in this order’, he is a little vague about
what that order is. But as far as I can see, the indeterminacies are all of the
kind where it doesn’t matter what order we choose, and it’s routine to find
a mechanical arrangement of the steps that does the required job.

There are three places where Ibn Sı̄nā relies on the reader to have a
certain skill. The first is the computation of the strongest consequence of a
non-sterile pair of premises. This is the job of the basic function consequence
at (Def3) in Appendix C. If the worst comes to the worst, the function can
be implemented by simply listing the possible cases, as in an appeal to the
student’s memory.

The second place is where, in the tah. s. ı̄l task, Ibn Sı̄nā asks the student
whether a certain named sentence is already h. ās. il. I see no problem about
taking this as a basic function hasil of the ASM, as in (Def6) in Appendix
C. It doesn’t necessarily follow that the sentences that are already h. ās. il can
be listed by listing all sentences and then filtering through the function
hasil, because the set SENTENCE could be dynamic. More precisely
there could be infinitely many sentences, or more than are listed in the set
SENTENCE in the ASM at the outset of the computation, and the ASM
may be able to add further sentences SENTENCE as the computation
proceeds. (Since SENTENCE is defined in terms of TERM , this would
involve adding new terms to TERM too.) This possibility doesn’t arise
when a single given sentence is being evaluated for being h. ās. il.

The third place where the reader needs a skill is where Ibn Sı̄nā says (in
Problems 1 and 2) ‘it needs a middle’. The situation is that a sentence χ
has been identified as the weakest fill for a certain datum, and the function
hasil has been used to reveal that χ is not already h. ās. il. I have to mention
another glitch hidden here. It could happen that χ is not itself already h. ās. il,
but it is a consequence of a one-premise inference (as in (8) from a premise
θ that is already h. ās. il. The algorithm should identify θ and put it in place of
χ. This needs an extra piece of machinery which I haven’t included in the
ASM. One excuse I can offer is that putting θ in place of χ could possibly
lead to a violation of the fourth figure condition, and we don’t know what
Ibn Sı̄nā thinks about this possibility.

27



In any case, the statement ‘it needs a middle’ is shorthand for:

We need to look for a term C and sentences φ1, φ2 using the
terms of χ and the termC , so that φ1, φ2 are already h. ās. il and are
the premises of a syllogism with conclusion χ and C as middle.

Ibn Sı̄nā discusses this situation in a number of places.
For example Qiyās [15] section 9.4 is about this question. Ibn Sı̄nā ad-

vises that we start by looking at the form of χ. Thus suppose it has the form
‘Every A is a B’. Then we should unpack the definition of the term A, and
extract from it sentences of the form ‘Every A is a C’. For each of these, we
should see whether we can also prove ‘Every C is a B’. If we have no suc-
cess with the definition ofA, Ibn Sı̄nā advises looking next at the properties
that we can prove for A, using the principles of the relevant science.

In the cases where χ has the form ‘No A is a B’ or ‘Some A is a B’, the
situation is symmetrical and we can start with either A or B. In the case of
‘Some A is not a B’, Ibn Sı̄nā’s wording suggests — I can’t put it stronger
than that — that we start with properties that some A is known to have.
So a general rule that covers all cases would be that we start by looking
for h. ās. il sentences that involve the subject term of χ. (Note that the subject
term could be either the left edge or the right edge of the gap.)

Ibn Sı̄nā comes back to the matter at Burhān [16] pp. 138.22ff and 139.10ff.
He claims that in mathematics most sentences have the form ‘Every A is a
B’ (here he is agreeing with Aristotle Posterior Analytics A14). He suggests
that when χ has this form in mathematics, if there is a middle as required,
then one can be found by unpacking the definition of the subject term of
χ. (This seems to me a gross oversimplification outside elementary linear
algebra.) In this case it would be reasonable to say that the list of possible
terms can be found mechanically from the definition of the subject term,
so we would only need to include in the ASM a basic function for finding
the definitions of terms. But Ibn Sı̄nā goes on to say that outside mathe-
matics things are not so straightforward. We would need to consider the
inherent accidents of the subject term of χ, and in the worst case even its
non-inherent accidents.

He comes back again to the same question in his autobiography. He
tells us that sometimes he was ‘at a loss about a problem, concerning which
I was unable to find the middle term in a syllogism’, and so he resorted to
prayer, then to alcohol and then to sleep; ‘many problems became clear to
me while asleep’ ([12] p. 27f). Prayer, alcohol and sleep are not mechanical
procedures.
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All in all, I think it would be very unwise to assume that Ibn Sı̄nā thinks
we can list in advance all the h. ās. il sentences that involve the subject term
of χ. This is a pity, because the backtracking algorithm of [5] (which Börger
and Stärk display as an ASM module on page 114 of [6]) assumes that we
can make this list.

At this point I am going to cheat and call on a relatively advanced kind
of Abstract State Machine called an asynchronous multi-agent ASM ([6]
Chapter 6). This multi-agent ASM has a family of ‘agents’ who each per-
form according to their own ASMs, at their own speeds and for the most
part independently. But there can be super-global procedures that pass
messages to and from the agents. The set of agents can be ‘potentially dy-
namic’, in other words there can be super-global procedures that add new
agents. In ASMs one can treat the set of threads in a Java program as a
dynamic set of agents; I thank Egon Börger for this example. (The term
‘super-global’ is to distinguish from those features of the agent ASMs that
are global within these ASMs.)

In this setting, suppose an agent reaches a point where ‘it needs a mid-
dle’. The agent then sends a message to the super-global agent who oper-
ates the super-global procedures; prayer, alcohol and sleep might be ways
of sending this message. The super-global agent responds by listing all the
possible options; but instead of sending the list to the agent, it splits the
agent into a family of agents, each of whom has one of the options to work
on. I see Ibn Sı̄nā identifying the global agent as the Active Intellect, and
the agents who carry out the algorithm as possible intellects, so that

(26)

when a connection occurs between our souls and [the Active In-
tellect], there are imprinted from it in them the intellected forms
which are specific for this specific preparation for specific judge-
ments. (Išārāt [20] II.3 iš. 13.)

But that’s an aside — the super-global agent has a precise job to do, which
is encoded in the ASM as a super-global basic function.

All the agents do the same calculation for the logical task. When the
logical task has delivered an affirmative answer, they switch to the tah. s. ı̄l
task and may have to split. So for the tah. s. ı̄l task we need to clarify the
notion of correctness of the ASM, as follows. The ASM is correct for the
tah. s. ı̄l task if: (1) when the task has a negative answer, all (lower level) agents
return a negative answer; (2) when the task has an affirmative answer, at least one
agent returns an affirmative answer; and (3) every agent returning an affirmative
answer also returns a sequence of sentences which is a correct fill for the gap in the
datum.
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A fragment of the backtracking procedure is still needed, but for a more
limited purpose, namely to find the weakest fill in a datum. Ibn Sı̄nā shows
at Problems 3 and 7 that he expects the student to find it by listing pos-
sibilities and trying each in turn. The edges of the gap are known, and
they provide the two terms of the weakest fill. So there are eight possi-
ble sentences to consider. Given this approach, it makes sense to list the
possibilities in an order where ψ comes before χ whenever χ entails ψ; so
when we first find a possible fill we know it is a weakest one. The function
listsentences at (Def2) in Appendix C provides such a list.

Ibn Sı̄nā allows the student to use background knowledge to cut down
from eight to a shorter list of possible fills; see the notes on Problems 3 and
7. I count this move as a shortcut, not as a part of the algorithm.

Are we sure that no further backtracking is needed? For example, per-
haps we find a weakest fill, but then further down the line we discover that
the resulting connected syllogism runs into trouble with the fourth figure
condition, so that we need to backtrack and try the converse of the weakest
fill instead. I believe that this problem doesn’t arise, because the premise or-
der condition fixes the order of the terms in all the intermediate sentences
in the connected syllogism, independent of the order of the terms in the
premises of the separated syllogism. To be sure of this we need a correct-
ness proof; but I think this would be wasted effort until we have an answer
to the question about which connected syllogisms to accept.

6 Review

We must do two things here. The first is to give an informal summary of
the algorithm, and the second is to place it in the history of logic and math-
ematics. A more formal description of the algorithm is given in Appendix
C, in the form of an asynchronous multi-agent ASM, where each agent fol-
lows its own agent ASM within the multi-agent ASM.
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6.1 Summary of the algorithm
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We describe what happens to a goal-datum pair as it proceeds through
the diagram above.

Entering the module DESCRIBE, the goal-datum pair is measured up to
determine where its gap site is and what the left and right edges of the gap
are. This information is attached to it for future use.

Then it proceeds to the module SYNTHESISE, which shrinks it down.
If there is a pair of adjacent sentences in the datum that have a term in
common, SYNTHESISE works out the strongest consequence of these two
sentences, and replaces the sentences by this strongest consequence. It does
this starting with the leftmost such pair of sentences, and continues until
either there are no such pairs left, or it reaches a pair that is sterile. In the
latter case it reports failure and the algorithm halts.

If the shrunken goal-datum pair survives through SYNTHESISE, it passes
to the module RAMIFY. This module determines the eight sentencesφ1, . . . , φ8

whose terms are the two edges of the gap. The sentences are listed so that
if φi entails φj but not vice versa, then j < i. Then the module splits the
goal-datum into eight clones, and it fills the gap in the i-th clone with the
sentence φi. So now there are eight goal-datum pairs, none of which has a
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gap.
There is a subtlety if the goal-datum pair that passes to RAMIFY has an

empty datum. In this case there is always a sentence that fills the gap and
entails the goal, namely the goal itself. So in this case RAMIFY makes just
one new page, in which the datum is changed to the goal sentence.

After RAMIFY has done its work, the first of the resulting gap-free goal-
datum pairs passes to SYNTHESISE, which shrinks down any adjacent pair
of sentences in the datum with a term in common, until either the datum
consists of a single sentence, or a sterile pair of sentences has come to light.
If a sterile pair of sentences comes to light, the goal-datum pair is discarded
and the next of the eight clones passes into SYNTHESISE for similar treat-
ment; and so on. If none of the eight clones are left, the module reports
failure.

If a goal-datum pair with a single-sentence datum survives, it passes
to the module SELECT. This module checks which of three cases hold: (1)
the datum equals the goal, and it is already h. ās. il; (2) the datum equals the
goal, but it is not already h. ās. il; (3) the datum doesn’t equal the goal. In case
(1) the module reports success in the tah. s. ı̄l task and the algorithm halts. In
case (2) the module reports success in the logical task (if it hasn’t already
been reported), restores the gappy goal-datum pair that RAMIFY had filled,
and sends this pair to the Active Intellect with a request for a h. ās. il sentence
that attaches at one side of the restored gap. The Active Intellect compiles
a list of all the h. ās. il sentences that could be used, and it makes one clone
of the goal-datum pair for each such sentence ψ. The clone that goes with
ψ has ψ inserted into its gap; but the gap is not completely filled, so we
once again have a goal-datum pair with a gap. All these new goal-datum
pairs are sent back into DESCRIBE in parallel, and so on around the cycle. In
case (3) the same happens as the failure case in the previous paragraph: the
goal-datum pair is discarded and the next of the eight is called for, unless
none of the eight are left, in which case the module reports failure.

There are several places where a module reports success or failure. If
no success has been reported yet, then the first report of success or failure
is a report on the logical task, except in case (1) for SELECT. If logical failure
has been reported, the algorithm halts. If logical success has been reported,
a later report of failure is a report on the tah. s. ı̄l task, and again the algorithm
halts. If logical success has been reported, the only further report of success
that makes any difference is a report of tah. s. ı̄l success in case (1) for SELECT.

This is the algorithm in broad outline. We need to clarify what are
the separate steps, and how the algorithm determines which step happens
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when — what Ibn Sı̄nā refers to as the ‘order’. The description below is
very much based on Gurevich’s notion of an ASM and the use made of it
by Börger and Rosenzweig in [5].

The idea of goal-datum pairs swimming around between modules is
only a metaphor. A different metaphor is more realistic: the calculator (or
‘agent’) does each piece of calculation by writing out one or more pages
that state the results of the calculation. (The pages are the ‘nodes’ of [5].) A
step of the calculation could involve writing several pages, but only where
the pages can be written simultaneously. For example when RAMIFY makes
eight clones and fills them, in principle this can be done on eight pages si-
multaneously (though eight hands would be useful), so it counts as a single
step. But when SYNTHESISE shrinks down the datum, the result of shrink-
ing down the first pair of sentences is generally an input to the operation
of shrinking the next pair. So shrinking down a single pair of sentences to
their strongest consequence is a whole step. In general SYNTHESISE will
process a goal-datum pair for several steps until there is no fat left on the
datum; this will involve producing a succession of new pages with shorter
datum sequences.

In principle the agent could go to work on any existing page at any
time, using any one of the four modules DESCRIBE, SYNTHESISE, RAMIFY

or SELECT. What determines which page and which module the agent will
take next?

Written in a separate place, not on the pages, there are three further
pieces of information stored in ‘global variables’. The first is the label of
the ‘current page’, i.e. the page now being processed. The agent reads the
current page and acts according to instructions in the algorithm; these in-
structions refer to the contents of the current page, and to the values of the
global variables. The instructions tell the agent what new pages to pro-
duce, and what changes to make to the global variables. So for example if
the agent is looking at page 5, the instructions may tell the agent to change
the current page variable to 6; the effect is that when page 5 has been dealt
with, the agent turns next to page 6. And so on.

There are two other global variables besides ‘current page’. One of them
records the goal (which is fixed at the start and never changes). The other
global variable stores reports of success or failure (and starts with the value
‘ignorance’).

The rest of the information needed for controlling the calculations con-
sists of six records on each page, as follows. (In Appendix C these six
records are called ‘properties’ of the page.) The first is a record of the datum
on that page. (The starting page carries the datum given by the problem to
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be solved.) The second records the gap site for the current goal-datum pair;
the record may also show that there is no gap, or that the gap site needs cal-
culating. The third is a record of the left and right edges of the gap. The
fourth is a record of the fill, i.e. the sentence that was put in the gap when
RAMIFY was last used.

The fifth and sixth records on the page store information about the
movement between the pages. One of them records ‘previous page’; what
this means is that when a page p is being read and a new page q is con-
structed according to the information in p, then p is recorded as ‘previous
page’ on q. (After the algorithm has reported success, one will need to work
backwards from the final page to its previous page, its previous page’s pre-
vious page and so on in order to reconstruct the required connected syllo-
gism.) The other record is called ‘next’. The main function of ‘next’ is that
when a group of pages p1, . . . , pn are constructed simultaneously, ‘next’ on
page pi (where i < n) indicates pi+1. When the agent is reading pi and has
to discard it, the value of ‘next’ on pi tells the agent which page to try next.
The agent makes this happen by changing the value of the global variable
‘current page’ to pi+1.

If we have the algorithm set up correctly, then at any stage the records
on the current page p will determine uniquely which module takes care of
this stage of the calculation — unless the algorithm has halted with a report
of success or failure. For example if the record of the gap site on p says that
there is no gap, the module that applies will be one of the two at the bottom
of the diagram. If and only if the record says that the gap needs calculating,
the module that applies will be DESCRIBE. If the record says that there is
a gap, the module that applies will be one of SYNTHESISE, RAMIFY and
ACTIVEINTELLECT.

The module ACTIVEINTELLECT, which is operated by a higher force,
comes into play when and only when the record ‘next’ on the current page
indicates prayer, alcohol or sleep — or more prosaically when it has the
value ‘needs a middle’.

Assuming that neither DESCRIBE nor ACTIVEINTELLECT has been called,
what settles the choice between SYNTHESISE, RAMIFY and SELECT? The
answer is that SYNTHESISE applies if and only if the datum on the current
page has two adjacent sentences with a term in common. (The module ap-
pears twice in the flow diagram above, but it has the same job to perform
in both cases.) If SYNTHESISE doesn’t apply, then RAMIFY applies if there
is a gap in the goal-datum pair, and SELECT applies if there isn’t.

It may be helpful to note that when RAMIFY or SELECT applies to a page,

34



then the datum on the page has been slimmed down as much as possible by
SYNTHESISE. So if the goal-datum pair has a gap (as at RAMIFY), the datum
consists of at most two sentences; if the pair has no gap (as at SELECT), the
datum is a single sentence. I suggested earlier that this explains why Ibn
Sı̄nā confines his 64 problems to cases where the datum has at most two
sentences.

For further details refer to Appendix C.

6.2 The place of the algorithm in history

My remarks here will be very incomplete — this is already a long paper. I
am very much indebted to Roshdi Rashed for his comments and informa-
tion, though he should not be held responsible for any particular claims I
make.

A ‘search algorithm’ is a mechanical procedure which allows its user
to find a solution of a problem, or establish that there is no solution, by
running systematically through a set of possible partial or total solutions.
(The set is called the ‘search space’.) Ibn Sı̄nā’s algorithm, insofar as it really
is an algorithm, is a search algorithm for finding solutions to the logical and
tah. s. ı̄l problems. It searches through partial or total compound syllogisms
that extend the datum. I know of no other examples of search algorithms in
the medieval Arabic literature. In modern times search algorithms go back
at least to Tarry’s maze-solving algorithm of 1895 ([4] p. 18ff), though the
best known examples are from the second half of the 20th century.

Closely related to search algorithms are two other kinds of algorithm.
A ‘counting algorithm’ allows its user to calculate the number of elements
of a given set. A ‘listing algorithm’ allows its user to list without repetition
all and only the elements of a given set. Search algorithms sometimes use
listing algorithms to list the elements of the search space; but unless the
listing is appropriate for the problem, the resulting search algorithm can be
very inefficient. Sometimes a counting algorithm can be proved correct by
examining a listing algorithm. For example one can show that the number
of elements of the cartesian product X × Y is the product of the number
of elements of X and the number of elements of Y by examining the lexi-
cographic product of X and Y (as done for example by Ibn Mun’im in the
13th century, Katz [22]).

The earliest reported algorithms in Arabic mathematics are listing and
counting algorithms in connection with strings of letters. They appear first
in the Kitāb al-cAyn, an 8th century linguistic text normally attributed to the
polymath al-K

¯
alı̄l ibn Ah. mad (though the situation must be more compli-
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cated, because the book includes third-party reports of al-K
¯

alı̄l’s views, cf.
Versteegh [32] Chapter 2). The basic problem that al-K

¯
alı̄l addresses is how

to list the words of Arabic in a dictionary. His preferred ordering is not lex-
icographic; rather he lists unordered sets of consonants, and for each set he
makes a sublist of its permutations. He introduces this ordering with some
combinatorial calculations that count numbers of permutations. In the 9th
century Ibn Duraid developed these calculations, describing them as a sort
of calculus (h. isāb). Cf. Rashed [27] p. 18ff for this aspect of the Kitāb al-cAyn
and its later influence.

In the 9th century Muh. ammad ibn Mūsā al-K
¯

wārizmı̄ introduced the
classical algorithm for solving quadratic equations. More than this, he
demonstrated the ‘cause’ (cilla) of the algorithm; in other words, he gave
a mathematical demonstration that the algorithm always yields a correct
answer when the coefficients of the equations are real numbers (or less
anachronistically, when they can be represented as lengths). For this he
converted from numbers to lengths, and then invoked geometrical argu-
ments in the style of Euclid. Details are in [27]. In the rich tradition inspired
by al-K

¯
wārizmı̄’s work, the word for ‘algebraic algorithm’ is bāb, translated

into Latin as regula.
None of the algorithms of al-K

¯
alı̄l or al-K

¯
wārizmı̄ are search algorithms,

and Ibn Sı̄nā gives no indication that he sees himself as doing anything
similar to what they did. He never describes his procedure as a h. isāb or
a bāb. There is some overlap with al-K

¯
alı̄l’s calculations, namely that Ibn

Sı̄nā uses lists of possibilities. But unlike al-K
¯

alı̄l, Ibn Sı̄nā spends no time
discussing systematic ways of listing the possibilities. Ibn Sı̄nā would have
had to consider some kind of backtracking algorithm if he had taken more
seriously the implications of the tah. s. ı̄l problem; but this would have moved
him into territory unknown to any medieval mathematician (as far as we
know).

To adapt his algorithm to problems with more than one gap, Ibn Sı̄nā
would have had to search systematically through the cartesian product of
the sets of possible fills at the separate gaps. If he proposed to do this by
listing the possibilities lexicographically — and it’s hard to think of any
other reasonable procedure — then this would have brought him close to
al-K

¯
alı̄l’s listing procedures, and he would very likely have given us the

earliest description of a search through lexicographic listing. This makes it
all the more painful that we don’t have the appendix which he said would
discuss problems with more than one gap. (See the note on 465.2.)

There is a major difference between Ibn Sı̄nā’s discussion and that of
al-K

¯
wārizmı̄. Namely, Ibn Sı̄nā never makes any attempt to show that his
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algorithm is correct. (If he had done, he would certainly have given a much
better algorithm.) There are several aspects to this difference. First, al-
K
¯

wārizmı̄ is following every mathematician’s dream: to solve a problem
by reducing it to some apparently quite different problem that is easy to
solve or has already been solved. The reduction of a problem in algebra
to one in geometry is a beautiful example; and incidentally it runs clean
counter to the aristotelian tendency to keep the various sciences in a rigid
hierarchy. I doubt that Ibn Sı̄nā ever had this mathematical dream. In the
same way as Aristotle, he writes mathematics like an intelligent outsider,
not like a true addict.

The second aspect is about how Ibn Sı̄nā sees the nature of logic. For
Ibn Sı̄nā logic is not about when this follows from that; it’s about how we can
see from first principles that this follows from that. For example if we are given
a linkage and a sentence, Theorem 2 gives a fast way of testing whether the
linkage entails the sentence without needing to construct any simple syllo-
gisms at all. In Ibn Sı̄nā’s time this theorem wasn’t yet known. But even
if it had been, it would have established a logical fact by going outside the
basic processes of deduction, and so Ibn Sı̄nā very probably wouldn’t have
used it. The fact that Ibn Sı̄nā uses only direct and bottom-level methods
was a great help for extracting the algorithm from Ibn Sı̄nā’s text. One
knew in advance that there were no hidden tricks or changes of viewpoint
or appeals to intuition. The student was expected to solve the problems by
direct application of basic facts of logic, and all that Ibn Sı̄nā was teaching
him was how to apply the steps in the right order (as he himself says at
[9.6.12]).

For balance one should add that in general Ibn Sı̄nā was certainly pre-
pared to use metatheorems of logic as well as theorems. In fact he despised
logicians who couldn’t do this. But the metatheorems that he used were
ones that summed up elementary facts about syllogisms, not ones that in-
troduced new ideas.

In one other respect Ibn Sı̄nā’s algorithm matches the mathematics of
his time. He achieves the effect induction by reducing more complex cases
to simpler ones, until he reaches ground level. We might compare Propo-
sition 8 of T

¯
ābit ibn Qurra in Rashed [26] p. 337ff, and Rashed’s analysis

on page 159. T
¯
ābit computes an n-term sum by writing the terms to be

summed, then below them n − 1 terms to be summed, and so on down to
a single term. This produces a two-dimensional array, and T

¯
ābit computes

the sum of the top line from properties of the whole array. For his exposi-
tion he takes n = 4 as a typical case. We saw that Ibn Sı̄nā takes cases of
length 2 or 3, but here the parallel may break down, because we found that
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these cases play a special role in the calculation.

Appendices

A Translation of Qiyās 9.6

IX.6 The analysis of syllogisms, with a mention of dos and don’ts
that can be relied on and used in that [analysis].

Prior Analytics i.32 46b38

[9.6.1] Sometimes a person is addressed with a well-crafted and defini-
tive syllogism, or he finds such a syllogism written in a book. But then 460.5
[sometimes] the syllogism is not simple but compound; or it appears not
as a connected whole but as scattered pieces. And sometimes moreover
the pieces are jumbled out of their natural order, or a part of the syllogism
is hidden, or something superfluous is added. [Even] when it is simple,
sometimes it is jumbled out of its natural order, or missing a piece, or with
a piece added. You already know how this happens. If we don’t have rules
to guide us, on how to seek with due deliberation the syllogism that proves
a given goal, [and to confirm] the soundness of the connection between a 460.10
given syllogism [and its goal], so that we can analyse the syllogism into a
group of premises, put them in the natural order, strip off defects and add
any part that is missing, reducing the syllogism to the syllogistic figure that
produces it — [if we don’t have rules for all this,] then the new information
that the syllogism provides will escape us. If the syllogism is sound then
[so is] what it entails. If it’s faulty, one should locate the fault either in its
premises or in its construction.

[9.6.2] So we need to have rules in the form of dos and don’ts, to be 460.15
used in the analysis of a syllogism. The rules should apply, not on the basis
that the syllogism is demonstrative or dialectical or some other kind, but
on the basis that it is an absolute syllogism. Then when you are given [the
syllogism], you reach what the analysis leads you to, and it agrees with
your starting point when you followed the route of synthesis. Thus you 461.1
find the truth agreeing with itself, however you come to it, and standing as
witness to its essence. For the truth, insofar as it is what is the case, stands
witness to its essence insofar as [its essence] is how the truth is conceptu-
alised. Likewise insofar as [the essence of truth] is the starting point of [the
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truth], [the truth] witnesses to its essence insofar as [the truth] is where [the
essence] leads us to; and insofar as [the essence of truth] is where [the truth]
leads us to, [the truth] stands as witness to its essence insofar as [the truth]
is the starting point of [its essence].

[9.6.3] So when you have found a syllogism, you start by looking for 461.4,5
its two premises. You do this before looking for the terms, because gath-
ering up fewer things is easier [than gathering up many]. Also when you
start with the terms, it can be that there are more than two ways of com-
bining them into two premises, so that the cases you would need to con-
sider would ramify. The reason for that is that by locating the terms you
don’t thereby locate the premises as things composed [from the terms]. You
would have to examine the case of each term, and then examine four pos-
sible ways of combining [pairs of terms]. So you would have to consider
five items: first you would consider the terms [themselves], and then you 461.10
would consider the four cases which arise from the ways of composing the
premises from two terms. But if you locate the two premises, it’s enough
for you to consider one more thing, namely to list the terms. Thus when
you have found two premises, locating the syllogism and how it behaves
will be easy for you.

[9.6.4] Then the first step is to investigate whether each of the premises 461.12
shares one of its terms with the goal but is distinguished from the goal
by another [term]. Suppose [it does, and] one of the two premises shares
both its terms with one part of the second premise, while another part of
the second premise — not the whole of it — shares both the terms of the
goal. Then the syllogism is duplicative, and the premise which has one
part overlapping the goal and another part overlapping the other premise
is a propositional compound, while the other premise is a duplication. So 462.1
look carefully at [the sentence] which has a part overlapping the goal in
two terms: is it meet-like or difference-like? If it is meet-like then find out
whether its overlap [with the goal] is its first or second clause, and find out
whether that other [sentence] is the same [as this part of the premise], or is
its contradictory. If the premise is difference-like, then find out whether the
overlapping [clauses] are the same or contradictories. Do the same with the
other [premise], which is the duplicating one. In this way your syllogism
is analysed into the propositional moods. 462.5

[9.6.5] If this is not the case, and for every [sentence] of the syllogism 462.5
the goal (which is proved through [the syllogism]) overlaps it in just one
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term, then you know that the syllogism is recombinant. If you have found
that each of the premises overlaps the conclusion, then look for the middle
term, so that you find the figure. Then connect the terms to the conclusion,
so as to find the major and minor [premises] and the other things that you
should be looking for. If you can’t find a middle term, then the syllogism
is not simple; instead you have a compound syllogism with at least four 462.10
terms.

[9.6.6] [First case: two given premises, each sharing one term with the
goal]

[Problem 1.] Suppose the goal is universally quantified affirmative, 462.10
namely ‘Every C is an A’, and suppose that the found premises are ‘Ev-
ery C is a B’ and ‘Every D is an A’. Then if it’s clear that ‘Every B is a D’,
your syllogism is in good order; otherwise it needs a middle.

[Problem 2.] Suppose the goal is universally quantified negative, [namely 462.12
‘No C is an A’], and suppose the found [premises] are ‘Every C is a B’ and
‘No D is an A’. Then consider whether ‘Every B is a D’. If so, then a syllo-
gism can be composed. If not, then it needs a middle.

[Problem 3.] Suppose the found premises are ‘No C is a B’ and ‘Every 462.15
A is a D’. Then it will be no help to you in this case to find ‘EveryB is a D’,
so that the negative [premise] becomes the minor [premise of a syllogism]
in the first [figure] and the remaining two premises are affirmative. So
consider whether it’s true for you that ‘EveryD is a B’. If it is, then you say
‘Every D is a B’ and ‘No C is a B’, which entails ‘No C is a D’. Then you 463.1
add to it that ‘Every A is a D’, so that it entails ‘No C is an A’.

[Problem 4.] Suppose the found [premises] are ‘No C is a B’ and ‘Every 463.2
D is an A’. Then it can’t be used.

[Problem 5.] Suppose the goal is ‘Some C is an A’, and you have found 463.2
[the premises] ‘Some C is a D‘ and ‘Every B is an A’. Then if ‘Every D is a
B’ is attached, you have found [the syllogism].

[Problem 6.] If the found [premises] are ‘EveryD is a C’ and ‘EveryB is 463.4
an A’, then if ‘Every D is a B’ is attached, you have found [the syllogism].

[Problem 7.] If the h. ās. il [premises] are ‘Every C is a D’ and ‘Some B 463.5
is an A’, then if ‘Every D is a B’ or ‘Some D is a B’ is attached, it can’t be
used. If ‘Every C is a B’ or ‘Some C is a B’ is attached, it can’t be used.
Likewise if ‘Some B is a C’, or ‘Some B is a D’ is attached, it can’t be used.
And likewise if ‘Every B is a D’ is attached, it can’t be used. And if ‘Every
B is a C’ is attached, it doesn’t entail to [‘Some] C is an A’.

[Problem 8.] If the found h. ās. il [premises] are ‘SomeD is a C’ and ‘Every 463.9
B is an A’, and ‘Every D is a B’ is attached, then this makes the syllogism

40



h. ās. il.
[Problem 9.] If the h. ās. il [premises] are ‘Every D is a C’ and ‘Every B 463.10

is an A’, and ‘Every (or some) D is a B’ is attached, then this makes the
syllogism h. ās. il.

[Problem 10.] If the h. ās. il [premises] are ‘Every D is a C’ and ‘Some B is 463.11
an A’, it can’t be used.

[Problem 11.] If the h. ās. il [premises] are ‘Some D is a C’ and ‘Every A is 463.12
a B’, it can’t be used.

So consider the remaining cases [with existentially quantified affirma-
tive goal] in the same way.

[Problem 12.] Suppose that the goal is existentially quantified negative: 463.13
‘Not every C is an A’, and that you have found [the premises] ‘Some C is a
B’ and ‘No D is an A’. Then if [an appropriate sentence with terms] B, D
is attached, then you can use it — for example ‘Every B is a D’.

[Problem 13.] If you have [the premises] ‘No C is a B’ and ‘Some D is 463.15
an A’, it can’t be used.

[Problem 14.] Likewise if you have [the premises] ‘Every C is a B’ and 463.16
‘Not some D is an A’, [the syllogism can’t be used].

[Problem 15.] If you have [the premises] ‘Not everyC is aB’ and ‘Every 464.1
D is an A’, then it can’t be used.

[Problem 16.] If you have [the premises] ‘Some B is a C’ and ‘No D is 464.1
an A’, and ‘Every B is a D’ is attached, you can use it.

[Problem 17.] If [the premises] are ‘No B is a C’ and ‘Some D is an A’, 464.3
it can’t be used.

[Problem 18.] If [the premises] are ‘Every B is a C’ and ‘Every D is an 464.3
A’, it can’t be used.

[Problem 19.] If you have [the premises] ‘Not everyB is a C’ and ‘Every 464.4
D is an A’, it can’t be used.

[Problem 20.] If you have [the premises] ‘Some D is a C’ and ‘No A is a 464.5
B’, and ‘Every D is a B’ is attached, then you can use it.

[Problem 21.] If you have [the premises] ‘No C is a B’, and ‘Some A is 464.6
a D’, it can’t be used.

[Problem 22.] If the h. ās. il [premises] are ‘Every C is a B’, and ‘Not some 464.7
A is a D’, it can’t be used.

[Problem 23.] If the h. ās. il [premises] are ‘Not everyB is a C’, and ‘Every 464.8
A is a D’, it can’t be used.

[Problem 24.] If you have: ‘SomeC is aB’ and ‘NoA is aD’, and ‘Every 464.8
B is a D’ is attached, you can use it.

[Problem 25.] If you have [the premises] ‘No B is a C’ and ‘Some A is a 464.10
D’, then it can’t be used.
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[Problem 26.] If you have [the premises] ‘EveryB is a C’ and ‘Not every 464.10
A is a D’, it can’t be used.

[9.6.7] Likewise in the other remaining cases. This is when the two 464.12
premises each share a term with the goal. If the two [premises] share [a
term] with each other, and they don’t share with the goal at all, then don’t
bother to analyse it, because in this case the shortfall is too great. And like-
wise when only one of the two shares [a term] with the goal, and the other 464.15
doesn’t share with the goal or with its companion, then [the argument] is
not straightforward to analyse. In order to explain how to analyse it we
would need to apply a lengthy principle that is not expressible in a rule 465.1
that one can take on board briefly. Analysis of [such an argument] is pos-
sible, but the appropriate place for this is the appendices, which will also
[extend] analysis to more than two premises.

[9.6.8] [Second case.] If you have found two premises that share [a term]
with each other, and one of them shares [a term] with the goal, then this
shared [term] is either the subject or the predicate of the goal. Suppose it is 465.5
the subject.

[Problem 27.] First suppose the conclusion is universally quantified and 465.5
affirmative, thus: ‘Every C is an A.’ Suppose the found [premises] are ‘Ev-
ery C is a B’ and ‘Every B is a D’. Then if you have found [a premise]
linking D to A, this makes [the syllogism] h. ās. il.

[Problem 28.] Suppose the conclusion is universally quantified negative 465.7
[thus: ‘No C is an A’], and the found [premises] are: ‘Every C is a B’ and
‘Every B is a D’. Then if you have found [the premise] ‘No D is an A’, this
makes [the syllogism] h. ās. il.

[Problem 29.] If you have found [the premises] ‘EveryC is a B’ and ‘No 465.8
B is a D’, and then you found [the attachment] ‘Every A is a D’, this makes
[the syllogism] h. ās. il without needing a conversion.

[Problem 30.] If you have found [the premises] ‘NoC is aB’ and ‘Every 465.10
B is a D’, it can’t be used.

[Problem 31.] If you have found [the premises] ‘NoC is aB’ and ‘Every 465.10
D is a B’, and then you found the premise ‘Every A is a D’, this makes [the
syllogism] h. ās. il.

[Problem 32.] Suppose the conclusion is existentially quantified affir- 465.12
mative [thus: ‘Some C is an A’]. Suppose [the premises] ‘Some C is a B’
and ‘Every B is a D’ are already h. ās. il, and ‘Every D is an A’ is attached,
then this makes [the syllogism] h. ās. il.

[Problem 33.] Suppose [we have] ‘Every D is a B’ and ‘Every B is a C’. 465.13
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Then if ‘Every D is an A’ or ‘Some D is an A’ is attached, this makes [the
syllogism] h. ās. il.

[Problem 34.] Suppose [the premises] are ‘Every C is a B’ and ‘Some B 465.14
is a D’; then this [syllogism] can’t be used.

[Problem 35.] If the existentially quantified [goal] is negative [thus: 465.15
‘Some C is not an A’], and you have found [the premises] ‘Some C is a
D’ and ‘Every D is a B’, and ‘No B is an A’ is attached, this makes [the
syllogism] h. ās. il.

[Problem 36.] If you have found [the premises] ‘Some C is a B’ and ‘No 466.1
B is a D’, and ‘Every A is a D’ is attached, this makes [the syllogism] h. ās. il.

Work through the remaining cases of this kind for yourself , taking the
compound [syllogisms] in turn.

[9.6.9] You should know that when we said: ‘This makes [the syllogism] 466.3
h. ās. il’, this meant h. ās. il without having to alter [the syllogism] by making a
conversion in the found [premises]. Also you should know that we are not
putting ourselves to the trouble of telling you now what figure the h. ās. il
[syllogism] is [proved] in. If you don’t understand that, and didn’t memo- 466.5
rise what was said [about it earlier], you won’t have been able to make any
use of this [lesson].

[9.6.10] [Third case: Two premises which share one term with each
other, and one of them shares a term with the predicate of the goal.]

[Problem 37.] If the shared [term] is in the predicate of the goal, and the 466.6
goal is universally quantified affirmative [thus: ‘Every C is an A’]; and you
have [the premises] ‘Every D is a B’ and ‘Every B is an A’, and ‘Every C is
a D’ is attached, this makes [the syllogism] h. ās. il.

[Problem 38.] If the goal is universally quantified negative [thus: ‘No C 466.7
is an A’], and the found [premises] are ‘Every D is a B’ and ‘No B is an A’,
and ‘Every C is a D’ is attached, this makes [the syllogism] h. ās. il.

[Problem 39.] If the found [premises] that you have are ‘No D is a B’ 466.9
and ‘Every A is a B’, and ‘Every C is a D’ is attached, this makes [the
syllogism] h. ās. il.

[Problem 40.] If you have [the premises] ‘Every D is a B’ and ‘No A is 466.10
a B’, and ‘Every C is a D’ is attached, this makes [the syllogism] h. ās. il.

[Problem 41.] If the goal is existentially quantified affirmative [thus: 466.11
‘Some C is an A’], and you have [the premises] ‘Some B is a D’ and ‘Every
D is an A’, and ‘Every B is a C’ is attached, you can use it.

[Problem 42.] If you have: ‘Some B is a D’, and ‘Every A is a D’, it can’t 466.13
be used.
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[Problem 43.] If you have ‘Some D is a B’ and ‘Every B is an A’, and 466.13
[the attached premise] is ‘Every D is a C’, you can use it.

[Problem 44.] If you have ‘Some D is a B’ and ‘Some A is a D’, it can’t 466.14
be used, even with the order [of the terms in a premise] converted.

[Problem 45.] If your goal is existentially quantified negative [thus: 466.15
‘Some C is not an A’], and you have [the premises] ‘Some B is a D’ and
‘No D is an A’, and ‘Every B is a C’ is attached, you can use it.

[Problem 46.] Or you have ‘Every B is a D’ and ‘Some D is not an A’ — 467.1
then you can’t use it.

[Problem 47.] If you have [the premises] ‘Not everyB is aD’ and ‘Every 467.2
D is an A’, you can’t use it.

[Problem 48.] If you have ‘No B is a D’ and ‘Some D is an A’, you can’t 467.2
use it.

[Problem 49.] If you have ‘Some D is a B’ and ‘NoA is a B’, and ‘Every 467.3
D is a C’ is attached, you can use it.

[Problem 50.] If you have ‘No D is a B’ and ‘Every A is a B’, and ‘Some 467.4
C is a D’ is attached, you can use it.

[Problem 51.] If you have ‘Not every D is a B’, and ‘Some A is a B’, it 467.5
can’t be used.

Try out for yourself the compound [syllogisms] where the overlap is 467.7
with the predicate of the goal, in the same relation as above.

These, and similar [examples] that we handle by comparison with them,
are instances of analysis where you have two premises. 467.9

[9.6.11] [Fourth case: One premise, which shares a term with the goal.]
[Problem 52.] In the case where you have a single premise, which over- 467.9

laps the predicate of the conclusion, and the goal is universally quantified
affirmative, namely ‘Every C is an A’, and you have [the premise] ‘Every
D is an A’, then if ‘Every C is a D’ is attached, this makes [the syllogism]
h. ās. il.

[Problem 53.] If you have ‘Every A is a D’, it can’t be used. 467.12
[Problem 54.] If the goal is universally quantified negative [thus: ‘No C 467.12

is an A’], and you have [the premise] ‘No D is an A’ or ‘No A is a D’, and
‘Every C is a D’ is attached, this makes [the syllogism] h. ās. il.

[Problem 55.] If you have [the premise] ‘Every D is an A’, then [the 467.14
syllogism] can’t be made h. ās. il.

[Problem 56.] Rather, if you have ‘Every A is a D’, and it’s true that ‘No 467.14
C is a D’, this makes [the syllogism] h. ās. il.

[Problem 57.] If the goal is existentially quantified affirmative [thus: 467.15
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‘Some C is an A’], and you have [the premise] ‘SomeD is an A’, and ‘Every
D is a C’ is attached, you can use it.

[Problem 58.] If you have [the premise] ‘Every D is an A’, and ‘Some C 467.16
is a D’ is attached, you can use it.

[Problem 59.] If you have ‘Some A is a D’, you can’t use it at all, unless 467.17
you convert [the premise].

[Problem 60.] If the goal is existentially quantified negative [thus: ‘Some 467.18
C is not an A’], and you have [the premise] ‘EveryD is an A’, you can’t use
it at all.

[Problem 61.] Rather, if [the premise] is ‘No D is an A’, and ‘Some C is 467.19
a D’ is attached, you can use it. 468.1

[Problem 62.] Likewise if you have ‘Some D is an A’, it can’t be used. 468.1
[Problem 63.] If you have [the premise] ‘Not every D is an A’, and 468.2

‘Every D is a C’ is attached, you can use it.
[Problem 64.] If [the premise] is ‘Not every A is a D’, it can’t be used. 468.3

[9.6.12] When you put the steps in this order, as I have shown you, you 468.4
will reach the [required] terms, figures and moods. And the terms that you
encounter will be ones within the formats mentioned above as ones that
can be used.

Apply exactly the same considerations to propositional compounds. 468.7

B Notes on the text translated

The text above is translated from the Arabic text in [15], which is a volume
from the Cairo edition of the Šifā’, published under the overall editorship
of Ibrahim Madkour.

Title

Ibn Sı̄nā writes ‘intafac X bi-Y’ to express ‘X can use Y’. The passive
form, which occurs in the title, is ‘untufic bi-Y’, meaning ‘Y can be
used’. I haven’t found this meaning in the dictionaries, including
Goichon [9]. But it’s fairly common in Ibn Sı̄nā’s logical writing. For
example in Burhān [16] 13.14 one can’t use (lam yantafic bi-) what a
teacher says unless one thinks for oneself; 63.8 there are students who
can use (intafac bi-) a compass but are still stupid; 141.13 in debate
one can’t use (lā yantafic bi-) a proof that requires very many middle
terms; cIbāra [14] 2.12f sciences are developed so that later generations
can use (yantafic bi-) them. Dozy [7] comes nearest with the meaning
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‘trouver son compte à’, which Gabriel Sabbagh kindly tells me can be
translated as ‘finds advantageous or useful’.

[9.3.1]

460.5f ‘not connected but separated’ (gair maws. ūl bal mafs. ūl): See sub-
sections 4.2 and 4.4 above for these notions.

[9.6.2]

460.17 ‘absolute syllogism’ (qiyās mut.laq): ‘absolute’ (mut.laq) means with-
out any restriction or condition being imposed. The kind of re-
striction he has in mind here is to syllogisms that are appropri-
ate for a particular purpose. For example demonstrative syllo-
gisms are for demonstrating that something is true by deducing
it from things that are self-evident or already demonstrated, so
their premises must be necessary truths. Dialectical syllogisms
must have premises that are true for the most part and generally
accepted. (Qiyās [15] p. 4, Išārāt [20] Method 9.)

461.2 ‘standing as witness to its essence’ (šāh. id li-d
¯

ātih): This rhetor-
ical flourish apparently comes from the translator into Arabic,
Tad

¯
ârı̂; it is not in the Greek original. Ibn Sı̄nā seems to have

replied with a similar blossom of rhetoric. But was Tad
¯
ârı̂ quot-

ing something?

[9.6.3]

461.8 ‘as thing composed’ : i.e. rather than as segments of text.

Prior Analytics i.32 47a11claims that it’s easier to divide a thing
into large parts than into small, but offers no argument in sup-
port of this. Ibn Sı̄nā may be right about which order is easier,
but his reason doesn’t convince. If you first locate the premises
as segments of the text, you don’t thereby locate them ‘as com-
posed from the terms’ either. There may be many different ways
of carving a subject-predicate form out of one and the same sen-
tence. For example if the sentence in front of you is ‘This line
and that line meet’, should you parse it as ‘(This line) (meets
that line)’ or as ‘(These two lines) (meet)’? Or to take Ramsey’s
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more philosophical example, should you parse ‘Socrates is wise’
as ‘(Socrates) (is wise)’ or as ‘(Wisdom) (is a characteristic of
Socrates)’ ([25] p. 21)? The nub of the matter is that Ibn Sı̄nā
in this section ignores the possibilities of local formalising; cf.
[13].

[9.6.4]

461.13 ‘its terms’: Ibn Sı̄nā is discussing propositional syllogisms here,
so for example the ‘terms’ of the proposition ‘if p then q’ are p
and q, both of which are sentences and not terms in the usual
sense. See subsection 4.5 above.

[9.6.6]

Problem 3. The two terms that occur once only in the given goal and premises
areB andD, so we are looking for a sentence φwith termsB and
D. The goal is universally quantified, so all the premises are uni-
versally quantified, and in particular φ is universally quantified.
The goal is negative, so there is exactly one negative premise;
hence the remaining two premises including φ must be affirma-
tive. Thus φ must be either ‘Every B is a D’ or ‘Every D is a B’.
We try both in turn. If we combine ‘Every B is a D’ with ‘No
C is a B’ as the premises of a simple syllogism, then since B is
subject in one and predicate in the other, the syllogism is in first
figure, and its minor premise is ‘No C is a B’ since this is the one
with the middle term D as its predicate. But the only mood in
first figure with two universally quantified premises and one of
them negative is the second mood (Celarent in the Latin nomen-
clature), whose minor premise is affirmative. So ‘EveryB is a D’
can’t be used, and we have to try ‘Every D is a B’ instead. The
result is the following connected compound syllogism, which
meets the requirements:

(27)
No C is a B. Every D is a B.

No C is a D. Every A is a D.

No C is an A.
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In his discussion Ibn Sı̄nā seems to derive ‘No C is a D’ from
the premises ‘Every D is a B’ and ‘No C is a B’ in that order,
breaking the premise order condition. Probably the reason is in
the immediately preceding text: ‘Consider whether . . . ‘EveryD
is a B’. If it is, then’ (etc.) The premise ‘Every D is a B’ follows
on naturally from this, and Ibn Sı̄nā need not be claiming that it
serves as first premise. (The case is quite different from Problem
33, where the order is unexpected until we remember Ibn Sı̄nā’s
conventions.)

Problem 5. ‘found’: What is found? In Problems 8, 9 it’s explicitly the syl-
logism, and there are no examples where it’s explicitly the goal.
So I infer the syllogism is meant here.

Problem 6. The problem is the same as Problem 9 below. The solutions are
different; at Problem 9 Ibn Sı̄nā gives the weakest fill and one
other, but here he gives only an unnecessarily strong fill. (See
the end of subsection 4.4.) One might be tempted to change the
text so as to remove the doublet. But there is another doublet:
Problem 43 is Problem 41 with the letters B and D transposed.
So I left the text alone.

Problem 7. Assuming the text is sound, here is a sequence of thoughts that
it could represent.

First, the goal is affirmative, so there is no need to consider an
added premise θ that is negative. Second, we saw in Problem 3
that θ should be taken with the first premise to yield an interme-
diate conclusion. The first premise is ‘Every C is a D’, so either
C or D is a term in θ. The other term can’t be A, since A already
occurs twice; so it must be B. (This is clumsy: the same reason-
ing would eliminate C too, since it also occurs twice. Maybe Ibn
Sı̄nā wanted his student to say ‘That’s clumsy’ and formulate the
reason.) So first we try affirmative sentences withB as predicate.
There are two withD as subject, and combining with ‘EveryC is
a D’ they yield respectively ‘Every C is a B’ and nothing at all.
‘Every C is a B’ can’t combine with ‘Some B is an A’, because
it would give a first figure syllogism with existentially quanti-
fied major premise, which is impossible. There are two with C

as subject, and they both give ‘Some B is a D’ (or conversely).
This can’t combine with ‘Some B is an A’ because both are ex-
istentially quantified. Next we try the possibilities with B as
subject. There are two existentially quantified, but again these
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will yield an existentially quantified intermediate sentence that
won’t combine with ‘Some B is a D’. There remain ‘EveryB is a
D’ and ‘EveryB is a C’. The first yields nothing with ‘Every C is
a D’. The second yields ‘Every B is a D’, which combines with
‘Some B is an A’ to yield ‘Some D is an A’, not the conclusion
we want.

The last case, namely ‘Every B is a C’, is important because it
does in fact combine with the given premises to yield the re-
quired goal; but the resulting syllogism uses only the second
premise. Since Ibn Sı̄nā doesn’t count this as a solution of the
problem, we have confirmation that the algorithm is not intended
to eliminate unnecessary premises.

But there is also a problem about how to read the text at the end
of the example. The Cairo edition has lam yuntij ’ilā j, which is
meaningless. The sense has to be either that the inference using
‘Some B is an A’ doesn’t use the premise ‘Every C is a D’, or
that when used with all the other premises, it doesn’t yield the
required conclusion. The normal usage is that one entails min or
can the premises and calā the conclusion; the preposition ’ilā ‘to’
could hardly be a variant of the first two, but it could be a variant
of calā ‘onto’, though I’ve found no other examples. Hence we
can guess that j should be j a, a shorthand for the goal (since
our C corresponds to Arabic j). Therefore I propose to emend to
lam yuntij ’ilā j a, and I have translated accordingly. See Problem
32 for the opposite error; there is very little difference between a
handwritten Arabic a and a short scratch on the paper.

Problem 8. ‘makes the syllogism h. ās. il’ (qad h. us. s. ila l-qiyās): For this transla-
tion see the notes on Problem 32.

Problem 9. See on Problem 6.

Problem 14. If we add the premise ‘Every B is a D’, then from ‘Every C is a
B’ we get ‘Every C is a D’. To deduce ‘Not every C is an A’ we
need ‘No D is an A’; ‘Some D is not an A’ wouldn’t be enough.
So it looks as if Ibn Sı̄nā here understands ‘Not some D is an
A’ (laisa bacd. u d a) as ‘Some D is not an A’. At first sight this is
at odds with his treatment of laisa kullu, which he always inter-
prets as ‘Not every’. There is a similar discrepancy at cIbāra [14]
67.10, where Ibn Sı̄nā says that lā kull and lā bacd. are equivalent.
The interactions of quantifiers and negation in Arabic are com-
plicated; Jamal Ouhalla alerts me to the fact that focus can affect
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scope. But as far as I can see, the relevant phrases in this Prob-
lem and at the cIbāra reference are in topic position, though there
are grounds for thinking that logic blinded Ibn Sı̄nā to questions
of topic.

Problem 22. Here ‘Not someA is aD’ should be interpreted as ‘SomeA is not
a D’. If it was read as ‘No A is a D’ and we attached ‘Every B is
a D’, the first two premises would yield ‘Every C is a D’, which
combines with ‘No A is a D’ to yield ‘No C is an A’ by Cesare,
and hence ‘Not every C is an A’ by (8). Compare Problem 14.

Problem 23. The Cairo text has ‘Every A is a D’ (kullu a d) rather than ‘Every
D is an A’ (kullu d a). But with that reading Ibn Sı̄nā should say
that attaching ‘EveryD is aB’ yields the required syllogism. I’ve
adopted the easiest correction that doesn’t introduce a doublet.

[9.6.8]

465.2 ‘in the appendices’ (bil-lawāh. iq): In several places in the Šifā’ Ibn
Sı̄nā refers to things that will appear in the appendices. But no
work of this name or with exactly the required contents has been
found. It has been suggested that Ibn Sı̄nā’s two other works
Taclı̄qāt and Mubāh. at

¯
āt contain material that was intended for

the appendices. (Gutas [12] pp. 141–144.) But the published ver-
sions of these two works contain only philosophical material,
and nothing about proof search. More’s the pity, because Ibn
Sı̄nā’s treatment of incomplete syllogisms with two or more gaps
would have shown us more about how he handled problems of
search. See subsection 6.2 for more on the historical context.

Problem 27. Ibn Sı̄nā doesn’t say what premise linking D to A will work.
There may be a subtle reason. This is the first example with two
premises φ1, φ2 to the left of the gap, so the student has a choice
between first combining φ1 with φ2 before combining the result
with the test sentence; or first combining φ2 with the test sen-
tence and then bringing in φ1. The first route is clearly more
sensible, because the result of combining φ1 with φ2 will be the
same for each test sentence. Ibn Sı̄nā forces the student to see
this, by putting pressure on the student to try several test sen-
tences. But the effect is slightly spoiled by the fact that in this
particular case the answer ‘Every D is an A’ is obvious without
any calculation.
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Problem 29. Paragraph [9.6.9] below suggests that Ibn Sı̄nā is talking about
converting a premise. But why should anybody think of con-
verting a premise in this example? A possible explanation lies
in the fact that this is the first example in this block where a
premise has its terms out of the obvious order. We might expect
(C,B)(B,D), (D,A), but instead the last premise gives (A,D).
Perhaps Ibn Sı̄nā had students who (apparently like Smith [3]
Note to 42b5–26) assumed that switches like this don’t occur.
Ibn Sı̄nā had made the same point already at Qiyās 444.5, where
it seems to have confused the copyists.

Problem 32. The Arabic contains two occurrences of qad h. us. s. il, but they must
mean different things. In general qad with the past tense is a
perfective marker: it indicates that the present state is the out-
come of a previous action described by the verb. But previous to
what? At the first occurrence here the phrase must mean previ-
ous to the problem having been posed, hence ‘already h. ās. il’. But
the second occurrence describes the outcome of the algorithm,
so it can’t mean that; it must mean that the application of the al-
gorithm created the present situation, hence ‘this makes it h. ās. il’.

Also the ’a at the end of the sentence in line 465.13 should be
deleted (as in one ms); cf. Problem 7.

Problem 33. This is the one Problem where Ibn Sı̄nā gives the premises in an
order that doesn’t form a linkage where the goal subject points
leftwards and the goal predicate points rightwards. The reason
for this is explained in subsection 4.4 above.

The solution ‘EveryD is anA’ is redundant since it implies ‘Some
D is an A’, which is already a solution (it’s the weakest fill). Ibn
Sı̄nā’s procedure of trying all options is likely to throw up redun-
dancies of this kind. But maybe he expects his brighter students
to note the redundancy and formulate a policy.

Problem 34. Delete the second occurrence of wa-bacd. b d.

466.1 ‘taking the compound [syllogisms] in turn’ (bi-h. asabi l-tarākı̄b):
h. asb means calculation (as in the modern h. āsib ‘computer’). But
there is probably no reference to computing or algorithms here.
‘Calculations’ in Ibn Sı̄nā’s time were normally assumed to be
numerical. So bi-h. asab here probably has its usual meaning of
‘according to’.
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[9.6.10]

Problem 37. Delete mād
¯

ā at the beginning of line 466.6. Also the ’i in the Cairo
edition is a misprint for ’in.

Problem 44. The student might worry that these two premises violate the
fourth figure condition. Strictly this is not relevant, because the
connected syllogism wouldn’t combine these two premises in a
simple syllogism; but it may explain why Ibn Sı̄nā remarks that
no conversion is needed.

Problem 48. In the Cairo text the first premise is ‘No B is a C’, violating the
case assumption for [9.6.10]. Read ‘No B is a D’, following two
manuscripts.

Problem 51. The Cairo text has ‘EveryA is aB’ for the second found premise.
There must be a slip, because in that case we get a syllogism by
attaching ‘Every D is a C’. But on the Cairo reading this is also
the only example in this block where the second found premise
is the same as in the previous example. So I have replaced ‘Every
A’ by ‘Some A’.

[9.6.11]

Problem 59. The only sentence that will complete the syllogism logically is
‘EveryD is aC’. The middle term isD, which is subject in ‘Every
D is a C’ and predicate in ‘Some A is a D’, so the syllogism vio-
lates the fourth figure condition. Converting the premise ‘Some
A is a D’ to ‘Some D is an A’ yields a third-figure syllogism in
Disamis.

Problem 61. We have to correct ‘Some C is an A’ to ‘Some C is a D’.

Problem 62. The Cairo text reads ‘Likewise if [the premise] is ‘No A is a D’,
and you have (cindak) ‘Some D is an A’ or ‘Some A is a C’, it
can’t be used.’ There are several problems with this. First, with
the datum ‘No A is a D’ we get the goal by appending ‘Some C
is a D’; so the datum is presumably wrong. Second, this is the
one problem where Ibn Sı̄nā seems to introduce the appended
sentence with cindak; in 28 other problems cindak introduces the
datum. Third, the sentence ‘Some A is a C’ is silly here, because
it has the same terms as the goal. We can get a reasonable prob-
lem by deleting the first and third syllogistic sentences and the
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text around them, as I have done in the translation. Then Ibn
Sı̄nā is saying correctly that the goal can’t be reached from the
datum ‘Some D is an A’.

[9.6.12]

468.7 ‘propositional connectives’: An example of a simple recombi-
nant propositional syllogism, using the propositional connective
‘If . . . then’, is

(28) If p then q. If q then r. Therefore: If p then r.

where p, q and r are declarative sentences. Ibn Sı̄nā brings this to
a form analogous to a predicative syllogism by the device of ‘re-
placing “if” by “whenever” ’ (e.g. Qiyās 471.5), so that the sense
becomes

(29)

Every occasion on which p is an occasion on which q.
Every occasion on which q is an occasion on which r.
Therefore: Every occasion on which p is an occasion
on which r.

This reduction, together with similar ones for some other propo-
sitional connectives, allows the proof search algorithm to be car-
ried over routinely from predicative syllogisms to propositional
ones.
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C The ASM

Briefly, an ASM consists of a set of rules operated by modules; for example
the module PROOFSEARCH below has four modules, namely DESCRIBE,
SYNTHESISE, RAMIFY and SELECT. At each step in a computation, all the
rules are applied once and simultaneously; if they clash, the machine stops.
Rules normally begin with a condition, so they do nothing unless the con-
dition is met. They can activate other rules by resetting parameters so that
the conditions for the other rules are met. For example when the conditions
for SYNTHESISE are met, the rules of SYNTHESISE have the effect of shorten-
ing the datum by 1 every time they operate. They continue to operate until
there are no consecutive formulas in the datum with a term in common; at
this point the condition for SYNTHESISE fails, but that for RAMIFY may be
met, so that the rules of RAMIFY take over.

The notation X := Y means that the value of the parameter X becomes
Y . The notationX⋆ means the set of nonempty finite sequences of elements
of X. I hope the rest is reasonably self-explanatory.

The logical part of this ASM was implemented in Perl 5 and run on all of
Ibn Sı̄nā’s 64 problems. There were discrepancies from Ibn Sı̄nā’s solution
(as reported in the Cairo text) at Problems 23, 33, 51, 61 and 62. These
are all discussed in the notes to the relevant problems in section B above.
Problem 33 is the only one of the 64 problems that lies outside the domain
of the algorithm. The other four discrepancies are well within the range of
transcription errors that one might expect from the state of the manuscript
tradition. Some could possibly be misprints in the Cairo edition — I haven’t
consulted any manuscripts to check this.

Multi-agent ASM

Universe: INTELLECT (dynamic set of agents)

(ASM1) ACTIVEINTELLECT=
forall ι ∈ INTELLECT if next(currpage).ι = needsmiddle then

let k = |hasils(fill(currpage).ι)|
if k > 0 then

let ιk := ι

if k > 1 then

let ι1, . . . , ιk−1 = new(INTELLECT )
forall 1 6 i 6 k

let p = new(PAGE).ιi
datum(p).ιi := insert(datum(currpage).ιi,
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i-th(hasils(fill(currpage).ιi)), gapsite(currpage).ιi)
gapsite(p).ιi := needscalculating

previous(p).ιi := currpage.ιi
next(p).ιi := 0
X(p).ιi := X(currpage).ιi

where X = edges, fill

currpage.ιi := p

where hasils(φ).ι is the set of all sentences that are h. ās. il for the intellect ι
and have exactly one term in common with φ; we assume this set is finite.
In general the i-th sentence in the set will contain a term t that is not already
in TERM.ιi, so the Active Intellect will need to add t to TERM.ιi; the term
t is the imprinted form that we met in (26).

Signature of the agent ASMs

Universes: TERM , PAGE

Globals:

goal ∈ SENTENCE

(input from the problem)
currpage ∈ N

(initially 0)
report ∈ {ignorance, logicalfailure, logicalsuccess, tahsilsuccess}

(initially = ignorance)

Page properties:

datum : PAGE → SENTENCE⋆

(initially input from the problem)
gapsite : PAGE → N ∪ {needscalculating}

(initially = needscalculating)
edges : PAGE → TERM2

fill : PAGE → SENTENCE

previous : PAGE → PAGE

next : PAGE → PAGE ∪ {needsmiddle}
(initially 0)

55



Agent modules

(ASM2) PROOFSEARCH = {DESCRIBE, SYNTHESISE, RAMIFY, SELECT}

(ASM3) DESCRIBE =
if gapsite(currpage) = needscalculating then

let p = new(PAGE)
take datum(currpage), goal and identify the gap site, the left
edge and the right edge. (If no gap then the gap site is 0.)
gapsite(p) := calculated gap site
edges(p) := (left edge,right edge)
previous(p) := currpage

X(p) := X(currpage)
where X = datum, fill, next

currpage := p

(ASM4) SYNTHESISE =
if gapsite(currpage) > 0 and next(currpage) > 0 and

(length(datum(currpage)) > 2 or

(length(datum(currpage)) = 2 and gapsite(currpage) 6= 1)) then

let k =

{

1 if gapsite(currpage) 6= 1,
2 otherwise

let ℓ = length(datum(currpage))
let φ = consequence(k-th(datum(currpage)),

(k+1)-th(datum(currpage)))
if φ 6= sterile then

let α = replacepair(datum(currpage), φ, k)
let p = new(PAGE)
datum(p) := α

previous(p) := currpage

if gapsite(currpage) > 1 then

gapsite(p) := gapsite(currpage) − 1
else

gapsite(p) := gapsite(currpage)
X(p) := X(currpage)

where X = edges, fill, next

currpage := p

else

if next(currpage) > 0 then

currpage := next(currpage)
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else

if report = ignorance then

report := logicalfailure

(ASM5) RAMIFY=
if gapsite(currpage) > 0 and next(currpage) > 0 and

(length(datum(currpage)) 6 1 or

(length(datum(currpage)) = 2 and gapsite(currpage) = 1)) then

if length(datum(currpage)) > 1 then

let p1, . . . , p8 = new(PAGE)
forall 1 6 i 6 8

let φ = listsentences(1-th(edges(currpage)),
2-th(edges(currpage)), i)

datum(pi) := insert(datum(currpage), φ, gapsite(currpage))
fill(pi) := φ

gapsite(pi) := 0
edges(pi) := edges(currpage)
previous(pi) := currpage

forall 1 6 j 6 7
next(pi) := pi+1

next(p8) := 0
currpage := p1

else

let p = new(PAGE)
datum(p) := insert(datum(currpage), goal, 1)
gapsite(p) := 0
edges(p) := edges(currpage)
fill(p) := goal

previous(p) := currpage

next(p) := 0

(ASM6) SELECT=
if gapsite(currpage) = 0 and length(datum(currpage)) = 1 then

if 1-th(datum(currpage) = goal then

if hasil(fill) = true then

report := tahsilsuccess

else

let k = least k > 1 such that
gapsite(previousk(currpage)) > 0
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let p := new(PAGE)
X(p) := X(previousk(currpage))

where X = datum, gapsite, edges

fill(p) := fill(currpage)
next(p) := needsmiddle

previous(p) := currpage

report := logicalsuccess

currpage := p

else

if next(currpage) > 0 then

currpage := next(currpage)
else

if report = ignorance then

report := logicalfailure

Basic functions

(Def1) SENTENCE ⊆ TERM2 × {0, 1}2

SENTENCE(s, t, i, j) ⇔ s 6= t

(Def2) listsentences : TERM2 × {1, . . . , 8} → SENTENCE

listsentences(s, t, 1) = (s, t, 0, 0)
listsentences(s, t, 2) = (s, t, 0, 0)
listsentences(s, t, 3) = (s, t, 0, 1)
listsentences(s, t, 4) = (s, t, 0, 1)
listsentences(s, t, 5) = (s, t, 1, 0)
listsentences(s, t, 6) = (s, t, 1, 1)
listsentences(s, t, 7) = (s, t, 1, 1)
listsentences(s, t, 8) = (s, t, 1, 1)

(Def3) consequence : SENTENCE2 → SENTENCE ∪ {sterile}
consequence(φ,ψ) =
{

strongest consequence of [φ,ψ] if [φ,ψ] is not sterile,
sterile otherwise.

(Def4) replacepair : SENTENCE⋆ × SENTENCE × N →
SENTENCE

replacepair([φ1, . . . , φn], ψ, i) = [φ1, . . . , φi−1, ψ, φi+2, . . . , φn].
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(Def5) insert : SENTENCE⋆ × SENTENCE × N →
SENTENCE

insert([φ1, . . . , φn], ψ, i) = [φ1, . . . , φi, ψ, φi+1, . . . , φn].

(Def6) hasil : SENTENCE → {true, false}
a user-defined basic function
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Budé, Paris 1990.

[2] Alexander of Aphrodisias, On Aristotle Prior Analytics 1.32–46, trans-
lated by Ian Mueller, Duckworth, London 2006.

[3] Aristotle, Prior Analytics, translated and edited by Robin Smith, Hack-
ett, Indianapolis Indiana 1989.

[4] Norman L. Biggs, E. Keith Lloyd and Robin J. Wilson, Graph Theory
1736–1936, Clarendon Press, Oxford 1976.

[5] Egon Börger and Dean Rosenzweig, ‘A mathematical definition of full
Prolog’, Science of Computer Programming 24 (1995) 249–286.

[6] Egon Börger and Robert Stärk, Abstract State Machines, Springer, Berlin
2003.

[7] R. P. A. Dozy, Supplément aux Dictionnaires Arabes, Librairie du Liban,
Beirut 1968.

[8] Sten Ebbesen, Commentators and Commentaries on Aristotle’s Sophistici
Elenchi, Vol. 1, The Greek Tradition, Brill, Leiden 1981.

[9] A.-M. Goichon, Lexique de la Langue Philosophique d’Ibn Sı̄nā, Desclée
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Qom, Qum, Iran 2000. (The logical part is translated: Shams C. Inati,
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